共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Colrat C. Deswarte A. Latché A. Klaébé M. Bouzayen J. Fallot J. P. Roustan 《Planta》1999,207(4):544-550
Eutypine, 4-hydroxy-3-(3-methyl-3-butene-1-ynyl) benzaldehyde, is a toxin produced by Eutypa lata (Pers.: Fr.) Tul., the causal agent of dying arm disease of Vitis vinifera L. (grapevine). Previously, we have shown that eutypine is involved in the development of disease symptoms. In the present
study, the effects of V. vinifera cell-suspension cultures on the biological activity of the toxin were investigated. Eutypine was converted by grapevine tissues
into a single compound, identified by mass spectrometry and nuclear magnetic resonance as 4-hydroxy-3-(3-methyl-3-butene-1-ynyl)
benzyl alcohol, designated eutypinol. This compound was found to be non-toxic for grapevine tissues. Unlike eutypine, eutypinol
failed to affect the oxidation rate or membrane potential of isolated mitochondria. In grapevine cells, reduction of eutypine
into the corresponding alcohol is an NADPH-dependent enzymatic reaction. An enzyme which reduced eutypine was partially purified,
over 1000-fold, using a five-step purification procedure. By gel filtration and sodium dodecyl sulfate-polyacrylamide gel
electrophoresis, the protein was found to have a molecular mass of 54–56 kDa. The enzyme exhibited an apparent K
m for eutypine of 44 μM, and was active between pH 6.8 and 7.5 with a maximum at pH 7.0. The eutypine reductase activity was
improved by Mn2+ and Mg2+ and inhibited by disulfiram and p-hydroxymercuribenzoate. The possible role of the eutypine-detoxification mechanism in the defense reactions of V. vinifera cells is discussed.
Received: 20 April 1998 / Accepted: 22 September 1998 相似文献
2.
Panagiotis M Kritonas K Irini NO Kiriaki C Nicolaos P Athanasios T 《Biomolecular engineering》2007,24(2):245-251
Many phytopathogenic species of the fungus Cercospora produce cercosporin, a photoactivated perylenequinone toxin that belongs to a family of photosensitizers, which absorb light energy and produce extremely cytotoxic, reactive oxygen species. The cpd1 (cercosporin photosensitizer detoxification) gene of yeast (Saccharomyces cerevisiae), which encodes for a novel protein with significant similarity to the FAD-dependent pyridine nucleotide reductases, confers resistance to cercosporin when over-expressed in yeast. The aim of this work was to investigate the potential ability of cpd1 gene to confer resistance to cercosporin when expressed in tobacco plants (Nicotiana tabacum). Transgenic tobacco plants were produced using Agrobacterium tumefaciens, with cpd1 integrated as the gene of interest. We report here that expression of cpd1 gene in tobacco can mediate resistance to cercosporin. The involvement of cpd1 gene in the detoxification of the cercosporin reinforces previous observations, which suggested that resistance to cercosporin is mediated by a mechanism involving toxin reduction. 相似文献
3.
4.
Pig kidney aldehyde reductase is inactivated by 2,3-butanedione, phenylglyoxal, methylglyoxal, and 1,2-cyclohexanedione. 2,3-Butanedione caused the most rapid loss in enzyme activity, the rate of loss being proportional to the concentration of 2,3-butanedione. Neither D-glyceraldehyde nor pyridine 3-aldehyde, both substrates for this broadly specific enzyme, protected the enzyme from inactivation but 1 mM NADPH or NADP completely prevented the loss of activity by 2,3-butanedione suggesting the involvement of arginine in the binding of cofactor. Nicotinamide mononucleotide (NMN) (reduced form) offered no protection to inactivation whereas ADP-ribose phosphate gave complete protection indicating that it is the latter portion of NADPH which interacts with the essential arginine. Both NMN and ADP-ribose phosphate are competitive inhibitors of aldehyde reductase with respect to NADPH. Butanedione-modified aldehyde reductase could still bind to a blue dextran-Sepharose 4B column suggesting that the modified arginine did not bind NADPH. This was confirmed by fluorescence spectra which showed that chemically modified aldehyde reductase caused the same blue shift of NADPH fluorescence as did native aldehyde reductase. Of additional interest was the quenching of NADPH fluorescence by aldehyde reductase which, with one exception, is in contrast to the fluorescence behavior of all other oxidoreductases. 相似文献
5.
A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones. Purification and characterization 总被引:3,自引:0,他引:3
A novel enzyme which specifically catalyzes the reduction of conjugated polyketones was purified to homogeneity from cells of Mucor ambiguus AKU 3006. The enzyme has a strict requirement for NADPH and irreversibly reduces a number of quinones such as p-benzoquinone, alpha-naphthoquinone and acenaphthenequione. The enzyme also reduces polyketones such as isatin and ketopantoyl lactone, and their derivatives. The apparent Km values for isatin and ketopantoyl lactone are 49.9 microM and 714 microM, respectively. The reduction of ketopantoyl lactone proceeds stereospecifically to yield L-(+)-pantoyl lactone. The pro-S (A) hydrogen at C-4 of NADPH is transferred to the substrate. The enzyme is not a flavoprotein and consists of two polypeptide chains with an identical relative molecular mass of 27,500. Quercetin, dicoumarol and some SH reagents inhibit the enzyme activity. 3-Methyl-1,2-cyclopentanedione and 1,3-cyclohexanedione are uncompetitive inhibitors with Ki values of 80.9 microM and 64.5 microM, respectively, to ketopantoyl lactone. 相似文献
6.
W S Davidson D J Walton T G Flynn 《Comparative biochemistry and physiology. B, Comparative biochemistry》1978,60(3):309-315
1. NADPH-dependent aldehyde reductase (AR) is widely distributed among animal species. It also occurs in flowering plants and fungi (yeast). 2. AR is located mainly in the kidney or renal tissue of all species examined, with the exception of fish where it occurs mainly in the liver. 3. The enzyme from each species is monomeric and has a molecular weight between 30,000 and 40,000 daltons. 4. The enzymes exhibit similar substrate specificities and pH profiles and are inhibited by barbiturates. 5. In the reduction of D-glyceraldehyde the monomeric AR of each species catalyzes the stereospecific transfer of the A hydrogen from NADPH. 相似文献
7.
An aldehyde reductase catalyzing the NADPH-dependent reduction of long-chain aldehydes has been purified 690-fold from bovine cardiac muscle. Based on the results obtained during gel filtration, this enzyme has an apparent molecular weight of 34,000. The pI of the aldehyde reductase was 6.1 and the enzymatic activity had a sharp pH optimum at 6.4. The enzyme catalyzed the reduction of aromatic aldehydes and aliphatic aldehydes having eight or more carbon atoms. Short-chain aldehydes, aldoses, or ketoses or long-chain methyl ketones were not utilized as substrates by this enzyme. However, the methyl ketone, pentadecan-2-one, was a competitive inhibitor of this enzyme with an apparent Ki = 10 μm when tetradecanal was the variable substrate. The reaction was not reversible when ethanol or hexadecanol was employed as substrate, utilizing either NAD+, or NADP+ as a cofactor. The addition of 10 mm pyrazole to the incubation medium had no effect on the enzymatic activity. 相似文献
8.
Hideaki Yamada Sakayu Shimizu Michihiko Kataoka Hiromi Sakai Teruzo Miyoshi 《FEMS microbiology letters》1990,70(1):45-48
Abstract NADPH-dependent aldehyde reductase (EC 1.1.1.2) was purified 23-fold with an overall yield of 11% from Sporobolomyces salmonicolor AKU 4429, in 4 steps and, by adding ammonium sulfate, the enzyme was crystallized. The enzyme has a strict requirement for NADPH and irrversibly reduces a number of aldehydes, such as p -nitrobenzaldehyde, pyridine-3-aldehyde and d -glyceraldehyde. Furthermore, it was found that the enzyme catalyses stereospecific reduction of 4-halo-3-oxobutanoate esters to the corresponding ( R )-4-halo-3-hydroxybutanoate esters, which are promising chiral compounds for the chemical synthesis of l -carnitine. 相似文献
9.
Generation of reactive oxygen species (ROS) in plants is an inevitable consequence of adverse environmental cues and the ability to detoxify deleterious by-products of ROS-mediated oxidation reactions reflect an important defence strategy to combat abiotic stress. Here, we have cloned the eutypine reducing aldehyde reductase gene (VrALR) from Vigna radiata (L.) Wilczek roots. We have expressed and purified the VrALR protein and analyzed its enzyme kinetic parameters and catalytic efficiency with three different substrates to confirm its identity. The functional characterization of this enzyme was unravelled through heterologous expression of the gene in Escherichia coli BL21 and an oxidative stress-sensitive Saccharomyces cerevisiae mutant strain, W3O3-1-A. Finally, the endogenous VrALR enzyme activity and the mRNA expression patterns of the VrALR gene in the roots of V. radiata in response to progressive drought stress in vivo was studied to correlate the ROS-detoxifying role of this important enzyme under the influence of progressive drought stress. Our results, for the first time, demonstrate that eutypine reducing VrALR provides varying degree of stress tolerance in bacteria, yeast systems and also plays a promising protective role against oxidative stress in V. radiata roots during gradual water deprivation. The present study provides an unequivocal evidence to understand the crucial role of aldehyde reductase ROS-detoxifying system which is highly essential for developing stress tolerance in economically important crop plants. 相似文献
10.
Jin-Hyoung Lee Kong-Sik Shin Seok-Cheol Suh Seong-Lyul Rhim Yeon-Hee Lee Myung-Ho Lim Hee-Jong Woo Yang Qin Hyun-Suk Cho 《Plant Cell, Tissue and Organ Culture》2013,115(2):243-252
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel, is the most widely distributed and destructive early season insect pest of rice, Oryza sativa L. worldwide. The rice plants were transformed with cryIIIA insecticidal gene as well as with the bar gene coding phosphinothricin acetyltransferase. CryIIIA gene under the control of a modified RCg2 promoter drives the insect-toxic gene expression in roots and/or leaves. The cryIIIA gene was transferred into O. sativa L. cv. Nakdong by Agrobacterium-mediated transformation. Stable integration of the transgene was confirmed in putative transformed rice by Southern blot analysis. The expression of the cryIIIA toxin gene in the roots of transgenic rice plants was verified by RT-PCR and immunoblot analysis. Transgenic rice plants were also evaluated for resistance to natural infestations of the RWW under field conditions between 2007 and 2011. The transgenic Btt8R and Btt12R lines reduced the growth rate of RWW larvae and pupae populations compared with non-transgenic control plants by approximately 52 and 58 %, respectively. To further examine the efficacy of the RWW bioassay, we used pots and performed experiments in trays and under field conditions in 2012. The Btt12R line reduced the total populations of RWW larvae and pupae in trays and under field conditions by 56 and 45 %, respectively. The bioassay experiments conducted over 6 years, showed a significant reduction rate of RWW larvae and pupae populations demonstrating that the cryIIIA gene in transgenic rice confers resistance to RWW. 相似文献
11.
Khattab SM Watanabe S Saimura M Kodaki T 《Biochemical and biophysical research communications》2011,(2):634-637
Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the key enzymes for xylose fermentation and have been widely used for construction of a recombinant xylose fermenting yeast. The effective recycling of cofactors between XR and XDH has been thought to be important to achieve effective xylose fermentation. Efforts to alter the coenzyme specificity of XR and HDX by site-directed mutagenesis have been widely made for improvement of efficiency of xylose fermentation. We previously succeeded by protein engineering to improve ethanol production by reversing XDH dependency from NAD+ to NADP+. In this study, we applied protein engineering to construct a novel strictly NADPH-dependent XR from Pichia stipitis by site-directed mutagenesis, in order to recycle NADPH between XR and XDH effectively. One double mutant, E223A/S271A showing strict NADPH dependency with 106% activity of wild-type was generated. A second double mutant, E223D/S271A, showed a 1.27-fold increased activity compared to the wild-type XR with NADPH and almost negligible activity with NADH. 相似文献
12.
A fungal chitinase gene fromRhizopus oligosporus confers antifungal activity to transgenic tobacco 总被引:1,自引:0,他引:1
We have studied whether a chitinase involved in cell autolysis of a filamentous fungus,Rhizopus oligosporus, can operate as an antifungal defense system in tobacco. Thechi1 gene was introduced into tobacco by theAgrobacterium tumefaciens leaf disc system. Among 22 transgenic tobacco plants, 2 were selected and their individual homozygous progeny, Tch1-1 and Tch2-1, were studied. Chitinase activity in the extracts of young leaves from Tch1-1 or Tch2-1, in which thechi1 gene product was detected by Western blot analysis, was three- to four-fold higher than that from the control plants. A fungal infection assay on the leaves infected with the discomycete pathogensSclerotinia sclerotiorum andBotrytis cinerea revealed that the symptoms observed with these two were remarkably suppressed as compared with the control leaves.Abbreviations
CaMV
Cauliflower mosaic virus
-
Km
r
kanamycin resistant
-
Km
s
kanamycin sensitive
-
MS
Murashige and Skoog
-
PCR
polymerase chain reaction
-
PDA
potato dextrose agar
-
PR
pathogenesis-related 相似文献
13.
M Kataoka Y Doi T S Sim S Shimizu H Yamada 《Archives of biochemistry and biophysics》1992,294(2):469-474
A novel NADPH-dependent carbonyl reductase was purified to homogeneity from the soluble fraction of a cell extract of Candida macedoniensis AKU 4588. The enzyme catalyzes not only the reduction of quinones, but also the reduction of aromatic aldehydes, conjugated polyketones, 2'-ketopantothenate esters, and 4-chloro-3-oxobutanoate esters. The enzyme shows absolute specificity for NADPH as a coenzyme and also shows quite high affinity toward NADPH (Km less than 5 microM). The apparent Km values for menadione and p-toluquinone are 167 and 180 microM, respectively. The enzyme is not a flavoprotein and is a monomer protein with a relative molecular mass of 45,000. Dicoumarol, quercetin, and some sulfhydryl reagents inhibit the enzyme activity. 相似文献
14.
15.
Thaumatin gene confers resistance to fungal pathogens as well as tolerance to abiotic stresses in transgenic tobacco plants 总被引:1,自引:0,他引:1
M. V. Rajam N. Chandola P. Saiprasad Goud D. Singh V. Kashyap M. L. Choudhary D. Sihachakr 《Biologia Plantarum》2007,51(1):135-141
We report here the development of transgenic tobacco plants with thaumatin gene of Thaumatococcus daniellii under the control of a strong constitutive promoter-CaMV 35S. Both polymerase chain reaction and genomic Southern analysis
confirmed the integration of transgene. Transgenic plants exhibited enhanced resistance with delayed disease symptoms against
fungal diseases caused by Pythium aphanidermatum and Rhizoctonia solani. The leaf extract from transgenic plants effectively inhibited the mycelial growth of these pathogenic fungi in vitro. The transgenic seeds exhibited higher germination percentage and seedling survival under salinity and PEG-mediated drought
stress as compared to the untransformed controls. These observations suggest that thaumatin gene can confer tolerance to both
fungal pathogens and abiotic stresses. 相似文献
16.
Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability 总被引:3,自引:0,他引:3
The vast majority of wine proteins have recently been identified as pathogenesis-related (PR) proteins. During the growing season, these proteins are expressed in developmentally dependent and inducible manners in grapevine leaves and grape berries, in which they are believed to play an important role in protection against fungal pathogens and possibly other stresses. Because of their inherent resistance to proteolytic attack and to the low pH values characteristic of wines, vinification can be seen as a "purification strategy" for grape PR proteins. The inevitable consequent accumulation of these proteins in wines becomes a technological nuisance because they adversely affect the clarity and stability of wines. Genetically modified vines underexpressing PR proteins would certainly lead to stable wines but would increase the plant susceptibility to fungal attack, and the actual trend seems to be in the opposite direction, that is overexpressing these proteins to obtain plants with enhanced resistance to pathogens--a trend that will probably augment problems associated with protein instability in the resulting wines. 相似文献
17.
Methotrexate (MTX)-resistant mutants of the parasitic protozoan Leishmania have been used as models for the mechanism and genetic basis of drug resistance in trypanosomatids and other cells. Three resistance mechanisms to MTX, a dihydrofolate reductase inhibitor, have been described in Leishmania: decreased uptake and accumulation of MTX via the folate/MTX transporter, amplification and overexpression of the dihydrofolate reductase-thymidylate synthase gene, and extrachromosomal amplification of H region DNA. We have now identified hmtxr as the H region gene conferring MTX resistance using a transfection-based approach. Data base searches show that the predicted HMTXr protein is related to members of the polyol dehydrogenase/carbonyl reductase family of aldoketo reductases, whose substrates include polyols, quinones, steroids, prostaglandins, fatty acids, and pterins. We therefore propose that HMTXr is also an oxidoreductase and suggest several biochemical mechanisms of resistance in Leishmania that could be exploited in the design of parasite-specific inhibitors. 相似文献
18.
Diphtheria toxin (DT), Pseudomonas aeruginosa Exotoxin A (ETA) and cholix toxin from Vibrio cholerae share the same mechanism of toxicity; these enzymes ADP-rybosylate elongation factor-2 (EF-2) on a modified histidine residue called diphthamide, leading to a block in protein synthesis. Mutant Chinese hamster ovary cells that are defective in the formation of diphthamide have no distinct phenotype except their resistance to DT and ETA. These observations led us to predict that a strategy that prevents the formation of diphthamide to confer DT and ETA resistance is likely to be safe. It is well documented that Dph1 and Dph2 are involved in the first biochemical step of diphthamide formation and that these two proteins interact with each other. We hypothesized that we could block diphthamide formation with a dominant negative mutant of either Dph1 or Dph2. We report in this study the first cellular-targeted strategy that protects against DT and ETA toxicity. We have generated Dph2(C-), a dominant-negative mutant of Dph2, that could block very efficiently the formation of diphthamide. Cells expressing Dph2(C-) were 1000-fold more resistant to DT than parental cells, and a similar protection against Pseudomonas exotoxin A was also obtained. The targeting of a cellular component with this approach should have a reduced risk of generating resistance as it is commonly seen with antibiotic treatments. 相似文献
19.
Protein synthesis elongation factor 2 (EF-2) from eukaryotes contains a conserved post-translationally modified histidine residue known as diphthamide. Diphthamide is a unique site of ADP-ribosylation by diphtheria toxin (DT), which is responsible for cell killing. In this report, we describe the construction of DT-resistant HeLa cell lines by engineering the toxin-resistant form of its specific substrate, protein elongation factor-2. Using site-specific mutagenesis of the histidine precursor of diphthamide, the histidine residue of codon 715 in human EF-2 cDNA was substituted with one of four amino acid residue codons: leucine, methionine, asparagine or glutamine. Mutant EF-2s were subcloned into a pCMVexSVneo expression vector, transfected into HeLa cells, and DT-resistant cell clones were isolated. The protective effect of mutant EF-2s against cell killing by DT, after exposing all four mutant strains derived from HeLa cells to different concentrations of the toxin (5-20 ng/mL) was demonstrated by: (1) the normal morphological appearance of the cells; (2) their unaffected or slightly slower growth rates; (3) their undisturbed electrophoretic DNA profiles whose integrity was virtually preserved. Mutant cell strains showed also considerable levels of resistance to very high concentrations of DT, in that they maintained slower but consistent rates of cell growth. It was hence concluded that despite its strict conservation and unique modification, the diphthamide histidine appears not to be essential to the function of human EF-2 in protein synthesis. In addition, DT-resistant HeLa cell clones should prove valuable hosts for various DT gene-containing vectors that express the toxin intracellularly. 相似文献