首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The success of environmental enrichment programs in effecting specific changes in the behavior of captive animals has not always been uniform. Separate studies demonstrated both an increase in food competition and a decrease in food competition among captive group-living primates upon introduction of foraging devices. The objectives of this study were to measure the effects of variation in resource distribution and availability on food competition in a group of captive adult golden lion tamarins (Leontopithecus rosalia). The resource variables chosen were suggested from optimal foraging theory. The energy invested to obtain an item influenced food transfer and aggressive behaviors while food abundance did not. All individuals obtained an equivalent number of items over the course of the experiment from the foraging device, even though some tamarins obtained most of their food rewards directly from the device while others received their food rewards primarily through food transfer from other group members. Because the monkeys appeared highly motivated to obtain food from the test apparatus and did not habituate to it, the foraging device used in this experiment could be used as regular environmental enrichment for golden lion tamarins. One way to circumvent potentially unacceptable rates of aggression, with this or any feeding protocol that increases foraging task complexity and search time, may be to provide more than one foraging device per group. Zoo Biol 17:231–244, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
I examined the role of vision in social foraging by contrasting group size, vigilance, spacing, aggression and habitat use between day and night in many species of birds and mammals. The literature review revealed that the rate of predation/disturbance was often reduced at night while food was considered more available. Social foraging at night was prevalent in many species suggesting that low light levels at night are not sufficient to prevent the formation and cohesion of animal groups. Group sizes were similar or larger at night than during the day in more than half the bird populations and in the majority of mammal populations. Factors such as calls, feeding noises or smells may contribute to the formation and cohesion of groups at night. Larger numbers of foragers at night may also facilitate the aggregation of more foragers. Vigilance levels were usually lower at night perhaps as a response to the lower predation risk or to the decreased value of scanning for predators that are difficult to locate. Low light levels may also make visual cues that promote aggression less conspicuous, which may be a factor in the lower levels of aggression documented at night. Spacing varied as a function of time of day in response to changes in foraging mode or food availability. Habitats that are avoided during the day were often used at night. Foraging at night presents birds and mammals with a new set of constraints that influence group size, time budgeting and habitat use.  相似文献   

3.
To better understand how individual relationships influence patterns of social foraging in primate groups, we explored networks of co-feeding in wild desert baboons (Papio ursinus). To minimize the risk of aggression and injury associated with contest competition, we expected that individual group members would choose to co-feed with those group-mates that are most likely to show tolerance and a willingness to share food patches. We tested two alternative hypotheses about who those group-mates might be: the "social bonds hypothesis" predicts that preferred foraging partners will be those with whom individuals share strong social bonds, indexed by grooming, whereas the "kinship hypothesis" predicts that preferred foraging partners will be relatives. We also investigated and controlled for the effects of dominance rank, given that competitive ability is known to shape foraging patterns. Social network analyses of over 5,000 foraging events for 14 adults in a single troop revealed that baboon co-feeding was significantly correlated with grooming relationships but not genetic relatedness, and this finding was also true of the female-only co-feeding network. Dominant individuals were also found to be central to the co-feeding network, frequently sharing food patches with multiple group-mates. This polyadic analysis of foraging associations between individuals underlines the importance of dominance and affiliation to patterns of primate social foraging.  相似文献   

4.
Tamarins (Callitrichidae) are cooperative breeders. Groups typically contain only two or three breeding individuals and subordinate group members are reproductively suppressed. Nonreproductive individuals, which are usually the offspring of the group's breeding members, delay dispersal while providing care to infant siblings. Callitrichid breeder-infant and helper-infant relationships have been well studied but empirical studies regarding the dynamics of breeder-helper relationships are sparse. I examined food-transfer interactions among parents and natal adults in 7 groups of captive lion tamarins, Leontopithecus spp., to test whether relationships are maintained by mutualism or reciprocity or are to the benefit of one side of a dyad. Individuals that had recently received food from a group member most frequently released food to the previous donor as their next act of transfer. Conversely, food transfer was not dependent on symmetrical relationships within groups over a time frame of several weeks. These results suggest that mutualism plays a role in the maintenance of food-transfer relationships but reciprocity does not. However, there is evidence for a reciprocal relationship between grooming and food transfer in one group. Subadults and adults living in their natal groups transferred proportionally more food to mothers than to oppositely-sexed subadult and adult siblings. Thus, individuals most likely to receive aggression preferentially released food to individuals most likely to inflict injury upon them. Although these results support the coercion hypothesis, they may suggest alternatively that food transfer by helpers to breeding adults is driven by inclusive fitness considerations.  相似文献   

5.
扩散作为动物适应生存环境的重要特征之一,受到自身生物学特征及环境等方面的制约。以家群形式生活和子代雄鼠扩散为主的东方田鼠,其成员个体是否因领地食物和空间资源竞争导致体重小、攻击性弱及胆小个体先行扩散。以新鲜马唐叶片构建三块密集均质的食物斑块,在食物斑块周边以透明玻璃设置观测箱,采用透明塑胶管连接三块食物斑块作为动物扩散的通道,构建东方田鼠扩散行为观测装置。将东方田鼠家群子代成员投放至带有自身家群气味的食物斑块,测定成员个体在食物斑块上的觅食行为序列过程和参数,以及向其他食物斑块扩散的行为过程和参数以及家群中先行扩散个体体重、攻击性及胆量占所有家群数的比率,检验成员个体的体重、攻击性及胆量对扩散的影响。结果发现,体重小、攻击性弱和胆小个体的觅食启动时间极显著地大于体重大、攻击性强和胆大个体的,但其先行扩散的比率却显著地大于体重大、攻击性强和胆大个体的;然而体重小、攻击性弱及胆小个体的扩散开始时间显著或极显著地大于体重大、攻击性强及胆大个体的。结果揭示,东方田鼠家群成员随着年龄的增长和对食物及空间资源竞争的加剧,体重大、攻击性强及胆大个体会迫使体重小、攻击性弱及胆小个体先行扩散。  相似文献   

6.
Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2 is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies.  相似文献   

7.
We examined the effects of kin-biased territorial defense behavioron the distribution of foraging attempts and percent weightchanges (fitness benefits) in juvenile Atlantic salmon (Salmosalar) and rainbow trout (Oncorhynchus mykiss) in an artificialstream channel. The individual percent weight changes and frequencyof aggressive interactions and foraging attempts were quantifiedin kin (full sibling) and non-kin groups of salmon and troutWe observed kin groups of both species to obtain significantlygreater mean and less variable percent weight gains that non-kingroups. In addition, faster-growing (dominant)individuals ofboth species within kin groups exhibited significantly feweraggressive interactions than did faster-growing nonkin individuals,while we observed no difference between kin and non-kin slower-growing(subordinate) individuals. Slowergrowing kin individuals ofboth species obtained significantly more foraging opportunitiesthan slower-growing non-kin individuals while there was no differencebetween faster-growing kin and non-kin individuals. These datasuggest that reduced aggression by faster-growing individualstowards slower-growing kin enables slower-growing kin to obtainmore foraging opportunities, resulting in higher and less variablepercent weight changes. These data also suggest that as a resultof kin-biased territorial defense and foraging behavior, juvenileAtlantic salmon and rainbow trout may be able to maximize inclusivefitness potential by defending territories near related conspecifics.  相似文献   

8.
Urbanization causes dramatic and rapid changes to natural environments, which can lead the animals inhabiting these habitats to adjust their behavioral responses. For social animals, urbanized environments may alter group social dynamics through modification of the external environment (e.g., resource distribution). This might lead to changes in how individuals associate or engage in group behaviors, which could alter the stability and characteristics of social groups. However, the potential impacts of urban habitat use, and of habitat characteristics in general, on the nature and stability of social associations remain poorly understood. Here, we quantify social networks and dynamics of group foraging behaviors of black‐capped chickadees (N = 82, Poecile atricapillus), at four urban and four rural sites weekly throughout the nonbreeding season using feeders with radio frequency identification of individual birds. Because anthropogenic food sources in urban habitats (e.g., bird feeders) provide abundant and reliable resources, we predicted that social foraging associations may be of less value in urban groups, and thus would be less consistent than in rural groups. Additionally, decreased variability of food resources in urban habitats could lead to more predictable foraging patterns (group size, foraging duration, and the distribution of foraging events) in contrast to rural habitats. Networks were found to be highly consistent through time in both urban and rural habitats. No significant difference was found in the temporal clumping of foraging events between habitats. However, as predicted, the repeatability of the clumping of foraging events in time was significantly higher in urban than rural habitats. Our results suggest that individuals living in urban areas have more consistent foraging behaviors throughout the nonbreeding season, whereas rural individuals adjust their tactics due to less predictable foraging conditions. This first examination of habitat‐related differences in the characteristics and consistency of social networks along an urbanization gradient suggests that anthropic habitat use results in subtle modifications in social foraging patterns. Future studies should examine potential implications of these differences for variation in predation risk, energy intake, and information flow.  相似文献   

9.
Although many variants of the hawk-dove game predict the frequency at which group foraging animals should compete aggressively, none of them can explain why a large number of group foraging animals share food clumps without any overt aggression. One reason for this shortcoming is that hawk-dove games typically consider only a single contest, while most group foraging situations involve opponents that interact repeatedly over discovered food clumps. The present iterated hawk-dove game predicts that in situations that are analogous to a prisoner's dilemma, animals should share the resources without aggression, provided that the number of simultaneously available food clumps is sufficiently large and the number of competitors is relatively small. However, given that the expected gain of an aggressive animal is more variable than the gain expected by nonaggressive individuals, the predicted effect of the number of food items in a clump-clump richness-depends on whether only the mean or both the mean and variability associated with payoffs are considered. More precisely, the deterministic game predicts that aggression should increase with clump richness, whereas the stochastic risk-sensitive game predicts that the frequency of encounters resulting in aggression should peak at intermediate clump richnesses or decrease with increasing clump richness if animals show sensitivity to the variance or coefficient of variation, respectively.  相似文献   

10.
Habitat structure can impede visibility and movement, resulting in lower resource monopolization and aggression. Consequently, dominant individuals may prefer open habitats to maximize resource gain, or complex habitats to minimize predation risk. We explored the role of dominance on foraging, aggression and habitat choice using convict cichlids (Amatitlania nigrofasciata) in a two‐patch ideal free distribution experiment. Groups of six fish of four distinct sizes first competed for shrimp in one‐patch trials in both an open and complex habitat; half the groups experienced each habitat type first. Following these one‐patch trials, each group then chose between habitat types in a two‐patch trial while competing for food. Finally, each fish underwent an individual behavioural assessment using a battery of “personality” tests to determine if behaviour when alone accurately reflected behaviour within a social context. In the one‐patch trials, dominant fish showed similar food consumption between habitats, but chased more in the complex habitat. In the two‐patch choice trials, dominants preferred and defended the complex habitat, forming an ideal despotic distribution with more than half the fish and competitive weight in the open habitat. Within the groups, individual fish differed in foraging and chasing, with repeatabilities of 0.45 and 0.23 across all treatments. Although a higher foraging rate during the individual assessment predicted foraging rate and use of the complex habitat during the group trials, aggression and boldness tests were not reflective of group behaviour. Across groups, heavier dominants and those with higher foraging rate in the open habitat used the open habitat more, suggesting that both risk and energetic state affect habitat preference in dominant convict cichlids.  相似文献   

11.
It is important to understand the effects of ecological factors on aggression during feeding in order to link habitat characteristics to competitive regime and social relationships. Multiple habitat characteristics are likely to affect aggression, but few researchers have examined the effect of multiple factors on intragroup competition simultaneously. I examined the effect of 8 factors on aggression during feeding in wild Japanese macaques living in a coniferous forest in Yakushima: density of the tree species, feeding time, number of feeding sites within a feeding tree, number of cofeeding animals, intratree macaque density, food type, and rank and age of the focal individual. When macaques cofed with other individuals, food type, the number of feeding sites, and their interactions significantly influenced aggression. Aggression increased when macaques ate fruits/seeds versus other foods and as the number of feeding sites decreased. Primate socioecological models highlight the importance of clumped distribution of food patches as a correlate of intragroup contest. However, my study indicates that primatologists need to pay attention to the factors related to the current feeding tree—food type and feeding tree size with respect to monopolizability—in addition to the distribution of food in the entire home range.  相似文献   

12.
Using marginal analysis to represent Blurton Jones's concept of tolerated theft, I show how equilibrium resource transfers among individuals might be affected by foraging behavior, resource qualities, and number of participants. The model applies to hominids and other species that exchange or share food or other resources. Among the results: Tolerated theft enhances the value to be derived from resources, packets intermediate in size are most likely to be subjected to tolerated theft, packet division is more likely to be unequal than equal, division is a function of group size, and tolerated theft is most likely in small groups. The model also suggests that among reciprocators the widest possible exchange or sharing is in the self-interest of the individual procuring the resource. In general, evolutionary cost-benefit accounting should track marginal changes in the value (fitness or utility) of resources. Marginal valuation is conceptually primary and may produce results that differ from direct measures of quantity.  相似文献   

13.
Field studies were conducted to clarify whether variation in food availability among habitats influences population density, and whether population density has a negative effect on foraging success in the orb-web spider, Nephila clavata. Lifetime food consumption per individual (i.e., foraging success) strongly correlated with mean body size of adult females and mean fecundity in populations. Also, there was a positive correlation between foraging success and population density. Since foraging success reflected potential prey availability in the habitat, food resource appeared to be a limiting factor for populations in this spider. Mean fecundity per individual correlated with population density of the following year, suggesting that decreased reproduction is a major component of food limitation on population density. Consistent defferences in mean body size between particular sites were observed over years, while such difference was less obvious in density. Thus, ranking of food abundance among habitats seems to be predictable between years. A field experiment revealed that an artificial increase in population density had no negative effect on the feeding rate of individuals, suggesting that intraspecific competition for food is not important in this species.  相似文献   

14.
For social species, being a member of a cohesive group and performing activities as a coordinated unit appear to provide a mechanism for the efficient transmission of information about food. Social learning about food palatability was investigated in two captive primates, Saguinus fuscicollis and S. labiatus, which form stable and cohesive mixed-species groups in the wild. We explored whether an induced food aversion toward a preferred food is modified during and after social interaction with non-averse conspecifics or congeners. Sets of intra- and interspecific pairs were presented with two foods, one of which was considered distasteful by one of the pairs (the other was palatable), and their behavior was compared pre-interaction, during interaction, and post-interaction. For the aversely-conditioned individuals of both species, the change in social context corresponded to a change in their preference for the food that they considered unpalatable, regardless of whether they had interacted with a conspecific or congeneric pair, and the change in food preference was maintained post-interaction. In a control condition, in which averse individuals did not have the opportunity to interact with non-averse animals, S. fuscicollis sampled the preferred food, but not as quickly as when given the opportunity to interact. We conclude that the social learning demonstrated here may allow individual tamarins to track environmental change, such as fruit ripening, more efficiently than asocial learning alone, because social learners can more quickly and safely focus on appropriate behavior by sharing up-to-date foraging information. Furthermore, since the behavior of congeners, as well as conspecifics, acts to influence food choice in a more adaptive direction, social learning about food palatability may be an advantage of mixed-species group formation to tamarins of both species.  相似文献   

15.
Group foraging can be beneficial for ungulates by decreasing the time required for vigilance, but it can also prove costly because of competition. To determine responses to gregarious behaviour, we studied foraging activity and vigilance of impala ( Aepyceros melampus ) near Kruger National Park, South Africa. We measured time spent foraging, vigilant, moving, grooming, engaging in social interactions and determined herd size and group distribution (i.e. density). We calculated accepted food abundance (AFA), food ingestion rate, steps per minute and percent vigilance for female, bachelor male and herd male impala. There was no relationship between herd size and vigilance, but vigilance decreased with increasing density ( t 1,311 = 4.91, P  <0.0001). Additionally, AFA decreased ( t 1,61 = 5.96, P  <0.0001) and steps per minute increased ( t 1,311 = 14.38, P  <   0.0001) as more individuals fed in close proximity to each other. Impala could be altering their behaviour to accommodate a perceived change in resources because of intraspecific competition and these adjustments might be related more to the distribution of herd members than to herd size. Further studies should examine the behaviour of gregarious animals in relation to the distribution of herd members in addition to group size.  相似文献   

16.
Effect of Group Size on Feeding Rate when Patches are Exhaustible   总被引:1,自引:1,他引:0  
One benefit of group foraging is that individual foragers can join the food discoveries of companions and thus increase encounter rate with food patches. When food patches are exhaustible, however, individual shares of each patch will decrease with group size negating the effect of increased encounter rate. Mean feeding rate may actually decrease with group size as a result of aggression or time wasted joining already depleted patches, or when searching to join the food discoveries of others, which is referred to as scrounging, precludes finding food. I examined the relationship between mean feeding rate and group size in captive flocks of zebra finches (Taenopygia guttata) foraging for small clumps of seeds. Finches in groups of two or four fared better than solitary birds in terms of mean feeding rate despite the fact that birds in groups scrounged a large proportion of their food. Solitary birds initiated feeding activity after a longer delay, which led to their lower success. Early departures by food finders from food patches joined by others may have lessened the impact of scrounging on mean feeding rate. As a result of benefits from the presence of companions, group foraging in zebra finches appears a viable alternative to foraging alone despite the cost of sharing resources.  相似文献   

17.
Pollinators, like most other animals, often face a tradeoff between increasing food uptake and minimising predation. An earlier model suggests that social bees should be more likely than solitary bees to adopt riskier foraging strategies in order to increase food uptake. In this paper, we extend this model by studying the effect of body size, in addition to sociality, on the predation–intake rate tradeoff. When, following standard practice, we express the foraging strategies in terms of mortality probability and net food uptake, we find that body size should have no effect on the foraging strategies of solitary bees. Social bees, on the other hand, should change their foraging preferences according to their size. Small social bees should tend to maximise food uptake, and large social bees to minimise mortality rate. Mortality, however, is the product of two terms: the probability of suffering an attack and the probability of succumbing to it. Noting that larger bees are less susceptible to succumb to a predation attempt than smaller bees, model predictions change when foraging strategies are expressed in terms of exposure to predators. Following this second approach, exposure to predators should increase monotonically with body size in solitary bees. In social bees it should reach a minimum for medium‐sized bees. We conclude that both bee body size and sociality should be considered when studying the effect of predators on resource use.  相似文献   

18.
Food availability can influence the optimal allocation of timeand energy among alternative behaviors such as foraging, courting,and competing for mates. If populations differ consistentlyin food availability, selection may cause geographic divergencein allocation strategies. At the opposite extreme, a norm ofreaction may evolve such that food intake influences the allocationstrategy of individuals in the same way in all populations.Between these two extremes, food intake reaction norms may divergegenetically among populations. For example, at sites where foodis scarce, selection may strengthen the effect of food intakeon behavior, whereas at sites with abundant food, selectionmay be weak or even oppose plasticity. We tested these ideasby raising male guppies from streams differing in food availabilityin a common laboratory environment on either low or high foodlevels, and then observing them in the presence of male competitors(from the same population and diet group) and receptive females.Males from low-food-availability streams spent more time foragingthan males from high-food-availability streams, independentof food intake. Compared with males raised on the high foodlevel, males raised on the low food level spent more time foragingand were less aggressive towards other males. Courtship displayrate increased with food intake but only in males from low-foodstreams. In contrast, males from high-food streams showed greaterplasticity with respect to male-male aggression. These resultsgenerally support the resource availability/behavioral tradeoffhypothesis while also revealing a surprising degree of ontogeneticcomplexity in a relatively simple system.  相似文献   

19.
Different species of Callitrichidae show a consistent pattern in intragroup aggression. Aggression is more frequent between same-sex individuals, with males and older siblings being more aggressive. These findings have been associated with reproductive competition and dispersal events. However, the few studies dealing with intragroup aggression have not fully explored the effects of food availability on aggression or the relationship between age and aggression. I observed 3 family groups of Saguinus midas for 50 weeks and recorded all occurrences of aggression. A total of 138 agonistic events occurred at an average of 1.16 aggressive acts/hour per group, and 52.2% of aggressive acts occurred during a food shortage condition, which accounted for about 12% of all meals in the groups. During the food shortage, aggression was significantly higher, which suggests that food competition promoted an increase in aggression levels. Aggression amongst siblings accounted for 65.2% of all aggressive acts. Aggression from brothers to sisters was significantly more frequent than aggression between brothers. Aggression rates were significantly different between age classes. Young siblings were significantly more aggressive toward old ones than the reverse. Age and aggression received followed a linear relationship, while age and aggression initiated tended to follow a curvilinear relationship. Higher rates of aggression in young siblings probably were prompted by puberty and associated hormonal changes.  相似文献   

20.
For specialised feeders, accessing food resources may impact on the performance of appetitive foraging and social behaviours at individual and population levels. Flamingos are excellent examples of social species with complex, species-specific feeding strategies. As attainment of coloured plumage depends upon intake of dietary carotenoids, and as study of free-ranging flamingos shows that foraging is disrupted by aggression from other birds, we investigated the effect of four feeding styles on foraging and aggression in captive lesser flamingos. We evaluated individual and group differences in foraging and aggression when birds consumed bespoke “flamingo pellet” from a bowl, an indoor feeding pool and an outdoor feeding section of their pool. Natural foraging (when birds were feeding irrespective of the presence of pellet) was recorded for comparison with artificial feeding styles. One-minute long video footage of the birds' activities in these different locations, recorded between 2013 and 2016, was used to evaluate behaviour. Total number of seconds engaged in feeding and in aggression was recorded by continuous sampling. The colour of individual birds was scored from 1 (mainly white) to 4 (mainly pink). For natural filter feeding in the outdoor pool, maximum foraging was twice as much as bowl feeding, whilst aggression was less than half as much as other feeding methods. Overall, a more restricted feeding style significantly predicted aggression, along with increasing group size. Plumage colour significantly influenced aggression (brightest flamingos were more aggressive) and showed a non-significant trend with foraging (brighter birds fed less than paler birds). No sex effect on feeding or aggression was found. This study enhances our understanding of husbandry and species' biology impacts on captive behaviour and provides data-based evidence to improve food presentation. For flamingos, implementation of spacious outdoor feeding areas can encourage natural foraging patterns by reducing excess aggression and enhances welfare by improving flock social stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号