首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although members of the crustacean genusDaphniahave been the target of much research, there is little understanding of the group's evolutionary history. We addressed this gap by inferring a phylogeny for one of the major species groups (longispina) using nucleotide sequence variation of a 525-bp segment of the mitochondrial 12S rDNA and allozyme variation at 21 loci. We identified the major lineages and their relationships, assessed the phylogenetic utility of the few morphological characters in the group, and examinedDaphniaphylogeography. Nuclear and mtDNA phylogenies were generally concordant in recognizing the same four species complexes. An exception was the position ofDaphnia galeata mendotae.The allozyme tree paired this species with theDaphnia rosealineage, whereas the mtDNA trees groupedD. g. mendotaewithDaphnia galeata galeata.This discordance was consistent with the reticulate evolution of nuclear genes supporting the hypothesis thatD. g. mendotaerepresents a case of homoploid hybrid speciation. Striking morphological stasis in thelongispinagroup was evidenced by its very limited morphological divergence over an estimated 100 MY, and by the unusual transitional saturation of the conservative 12S rRNA gene within a species group. Phylogenetic inference also provided evidence that similarities in cephalic crest shape likely resulted from convergent or parallel evolution among species. Endemism at the continental level was indicated for previously cosmopolitan species, but the estimated times of these divisions were inconsistent with vicariance events suggesting recent dispersal among continents. A significant role for divergent selection in new habitats during speciation was suggested by the neighboringly sympatric distributions of four sister species pairs over broad geographic areas.  相似文献   

2.
The morphological stasis of many freshwater crustaceans has resulted in the prior delineation of cosmopolitan species and has been explained by their capacity for long-distance dispersal. This study examines the phylogeography of Daphnia obtusa, a cladoceran thought to be widespread in North America. However, sequence variation of the mitochondrial cytochrome c oxidase subunit I gene indicates that this taxon is composed of two morphologically cryptic species, designated D. obtusa NA1 and NA2. NA2 is restricted to the east, whereas NA1 is broadly distributed across the United States, and is subdivided into four phylogroups that show weak genetic differentiation over broad geographical areas, which likely reflects recent long-distance dispersal. The current distributions of the four phylogroups in NA1 can be explained by recent range expansion from different refugia following the last Pleistocene glacial advance. Interestingly, the mitochondrial phylogroups identified in this study do not correspond to lineages detected in a previous allozyme analysis. However, the latter groups are associated with a habitat shift suggesting that natural selection may have played a role in their divergence. The results of this and previous studies illustrate the complicated biogeographical history of freshwater cladocerans.  相似文献   

3.
This study investigated the range-wide phylogenetics and biogeography of the Cape kurper Sandelia capensis, a primary freshwater fish endemic to and widespread within the Cape Floristic Region (CFR) of South Africa. Maximum likelihood, Bayesian phylogenetic and haplotype network analyses, based on two mitochondrial and two nuclear genes, revealed the existence of three reciprocally monophyletic, deeply divergent and allopatric clades that probably represent cryptic species. The West Coast Clade is largely confined to the Langvlei, Verlorenvlei, Berg and Diep Rivers, the Klein River Clade is endemic to the Klein River and the South Coast Clade is found everywhere else in the range of S. capensis sensu lato. It was hypothesised that divergences within S. capensis sensu lato probably occurred because of isolation of coastal drainages by persistent drainage divides or vicariance of current tributaries by the drowning of their confluences by high sea levels. The current distribution of lineages could be due to historical range expansion and gene flow via river capture or some other mode of transdivide dispersal or dispersal during periods of low sea level via palaeoriver confluences of currently isolated coastal rivers. Comparison of BEAST2 estimated divergence times with the timing of climatic, geological and geomorphological events supported long-term coastal drainage isolation, punctuated by rare transdivide dispersal events and limited palaeoriver dispersal, as the best explanation of current phylogeographic and divergence patterns in S. capensis. Hydrological barriers that block upstream passage in palaeotributaries could hypothetically explain why S. capensis failed to disperse through certain palaeoriver confluences. There were several sites where biogeographic patterns have likely been confounded by human translocation of S. capensis. Alien fish predators and water extraction may threaten the three cryptic species more severely than previously realised, due to their smaller population sizes and inhabitation of only a portion of the range previously ascribed to S. capensis sensu lato. The preponderance of cryptic diversity and endemism in the CFR suggests that additional undescribed cryptic species of obligate freshwater fishes may be found in short coastal river systems around the world, especially in regions with a history of geological stability and a narrow continental shelf.  相似文献   

4.
Gastrotricha is a cosmopolitan group of aquatic invertebrates. To date, approximately 765 species have been described. This study is the first to deal with species delimitation and cryptic species of freshwater Gastrotricha. Three commonly encountered species, Heterolepidoderma ocellatum, Lepidochaetus zelinkai, and Lepidodermella squamata, are investigated for cryptic speciation. Most of the material is based on Swedish specimens but closely related species from other parts of the world are also included. Taxonomic revisions are supported by phylogenies based on 18S rRNA, 28S rRNA, and COI mtDNA of freshwater Chaetonotidae from several genera and inferred from Bayesian and maximum likelihood approaches. Heterolepidoderma ocellatum f. sphagnophilum is raised to species level, under the name H. acidophilum n. sp. Moreover, genetic data based on COI indicate large variation between two morphologically very similar groups of Lepidodermella squamata. The extent of cryptic speciation in L. zelinkai appears low. Based on the phylogenetic hypothesis presented in this article, the new species, Lepidodermella intermedia n. sp., from northern Sweden is also described. The phylogenetic hypothesis generated shows that Chaetonotidae is a non-monophyletic group.  相似文献   

5.
Cladocerans and copepods are globally important freshwater zooplankton groups, differing in reproductive modes and dispersal abilities. We compared genetic variation of two common taxa of these crustaceans, the Daphnia longispina species complex (known to harbour multiple cryptic lineages) and Eucyclops serrulatus (morphologically and ecologically variable morphospecies), in lakes of ten Eastern European mountain ranges. We expected to discover cryptic lineages in both groups, and to observe different geographical patterns of diversity because of differences in life cycles. Within E. serrulatus, limited sampling through lowland habitats indeed showed the presence of eight highly divergent clades, probably cryptic species, but most of these were not found in the studied mountain lakes. Such a pattern was congruent with the diversity of the D. longispina complex. Regional coexistence of multiple clades within respective species complexes (two in Eucyclops and three in Daphnia) was observed only in the Tatra Mountains (on the Polish?Slovak border). In all other studied mountain ranges (in the Balkans), only single lineages of Daphnia and Eucyclops, respectively, were present, showing similar intraspecific patterns and no evidence for stronger dispersal limitation in Eucyclops than in Daphnia. Our results indicate that substantial cryptic variation may be expected in seemingly widespread copepod taxa. However, detection of cryptic lineages is not a general pattern in mountain lakes, although these habitats harbour substantial genetic diversity in crustacean zooplankton. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 754–767.  相似文献   

6.
The origin of disjunct distributions in high dispersal marine taxa remains an important evolutionary question as it relates to the formation of new species in an environment where barriers to gene flow are not always obvious. To reconstruct the relationships and phylogeographic history of the antitropically and longitudinally disjunct bryozoan Membranipora membranacea populations were surveyed with mtDNA cytochrome oxidase 1 (COI) sequences across its cosmopolitan range. Maximum parsimony, maximum likelihood and Bayesian genealogies revealed three deep clades in the North Pacific and one monophyletic clade each in the southeast Pacific (Chile), southwest Pacific (Australia/New Zealand), North Atlantic and southeast Atlantic (South Africa). Human-mediated dispersal has not impacted M. membranacea’s large-scale genetic structure. M. membranacea did not participate in the trans-arctic interchange. Episodic long-distance dispersal, combined with climatic vicariance can explain the disjunct distribution. Dispersal led southward across the tropics perhaps 13 mya in the East Pacific and again northwards perhaps 6 mya in the Eastern Atlantic to colonize the North Atlantic from the south, and along the West Wind Drift to colonize Australia. The clades differentiated over evolutionary time in their respective ocean region, potentially forming a sibling species complex. The taxonomic status of the clades is discussed.  相似文献   

7.
Little has been known about the impacts of past vicariance events on the phylogeography and population structure of freshwater fishes in East Asia. The aims of this study are to assess the genetic variability with extensive sampling throughout the range of Chinese spiny loach, Cobitis sinensis, and to infer the genetic structure and evolutionary history of populations. Cobitis sinensis in China may have initiated from two ancestral populations, namely Yangtze and Pearl Rivers, which diverged about 7.24 MYA likely due to drainage systems alteration. In the phylogroup I, a southward dispersal event occurred from East China (Yangtze River) to south ZheMin and Hainan subregions, followed by eastward dispersal from ZheMin to south Taiwan. In the phylogroup II, eastward colonization took place from Pearl River to north Taiwan in the late Pliocene, coupled with loss of genetic diversity in the island populations. This study showed that Cenozoic tectonic movements and climatic and sea‐level fluctuations may have shaped the genetic structure of C. sinensis in concert. Highly diverged mtDNA sequences suggest existence of cryptic species in morphospecies C. sinensis.  相似文献   

8.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

9.
The amphi‐boreal faunal element comprises closely related species and conspecific populations with vicarious distributions in the North Atlantic and North Pacific basins. It originated from an initial trans‐Arctic dispersal in the Pliocene after the first opening of the Bering Strait, and subsequent inter‐oceanic vicariance through the Pleistocene when the passage through the Arctic was severed by glaciations and low sea levels. Opportunities for further trans‐Arctic dispersal have risen at times, however, and molecular data now expose more complex patterns of inter‐oceanic affinities and dispersal histories. For a general view on the trans‐Arctic dynamics and of the roles of potential dispersal–vicariance cycles in generating systematic diversity, we produced new phylogeographic data sets for amphi‐boreal taxa in 21 genera of invertebrates and vertebrates, and combined them with similar published data sets of mitochondrial coding gene variation, adding up to 89 inter‐oceanic comparisons involving molluscs, crustaceans, echinoderms, polychaetes, fishes and mammals. Only 39% of the cases correspond to a simple history of Pliocene divergence; in most taxonomical groups, the range of divergence estimates implies connections through the entire Pliocene–Pleistocene–Holocene time frame. Repeated inter‐oceanic exchange was inferred for 23 taxa, and the latest connection was usually post‐glacial. Such repeated invasions have usually led to secondary contacts and occasionally to widespread hybridization between the different invasion waves. Late‐ or post‐glacial exchange was inferred in 46% of the taxa, stressing the importance of the relatively recent invasions to the current diversity in the North Atlantic. Individual taxa also showed complex idiosyncratic patterns and histories, and several instances of cryptic speciation were recognized. In contrast to a simple inter‐oceanic vicariance scenario underlying amphi‐boreal speciation, the data expose complex patterns of reinvasion and reticulation that complicate the interpretation of taxon boundaries in the region.  相似文献   

10.
The dispersal and history of species affects their genetic population structure at both small and large geographical scales. The common whelk, Buccinum undatum, is a widespread subtidal gastropod in the North Atlantic that has no planktonic larvae and has thus limited dispersal capacity. The snail, which has been harvested by humans for centuries, is highly variable in morphology. To evaluate the population structure in the rich fishing grounds in western Iceland and its divergence from samples across the Atlantic, genetic patterns based on sequence variation in two mitochondrial (mt)DNA genes (COI and 16S) and five microsatellites were studied and compared with variation in populations from both sides of the Atlantic. Significant differences in allele and haplotype frequencies were found among samples separated by short distances along the coast of Iceland. Partition of the variation showed larger variance among samples obtained from distant regions than from neighbouring sites and genetic distances were correlated with geographical distance among populations in Europe. Phylogeographic patterns in mtDNA reveal different monophyletic lineages on both sides of the Atlantic, which predate the onset of the Ice Age and which may constitute cryptic species. Similar micro‐ and macrogeographical patterns were observed for the mtDNA and microsatellite markers, despite high frequencies of null alleles. Bayesian skyline reconstructions of the demographic history and mismatch distributions suggest that, although sizes of some populations were unaffected by Ice Age glaciations, others show signs of expansion after the Last Glacial Maximum. These phylogeographical patterns are consistent with patterns expected for low dispersal species that have survived in allopatric glacial refugial populations on both sides of the Atlantic and in deep‐sea refugia within each continent. The observed genetic structure has implications for conservation and sustainable management of the harvested populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 145–159.  相似文献   

11.
Abstract Many bryophyte species have distributions that span multiple continents. The hypotheses historically advanced to explain such distributions rely on either long-distance spore dispersal or slow rates of morphological evolution following ancient continental vicariance events. We use phylogenetic analyses of DNA sequence variation at three chloroplast loci ( atpB-rbcL spacer, rps4 gene, and trnL intron and 3'spacer) to examine these two hypotheses in the trans-Antarctic moss Pyrrhobryum mnioides. We find: (1) reciprocal monophyly of Australasian and South American populations, indicating a lack of intercontinental dispersal; (2) shared haplotypes between Australia and New Zealand, suggesting recent or ongoing migration across the Tasman Sea; and (3) reciprocal monophyly among Patagonian and neotropical populations, suggesting no recent migration along the Andes. These results corroborate experimental work suggesting that spore features may be critical determinants of species range. We use the mid-Miocene development of the Atacama Desert, 14 million years ago, to calibrate a molecular clock for the tree. The age of the trans-Antarctic disjunction is estimated to be 80 million years ago, consistent with Gondwanan vicariance, making it among the most ancient documented cases of cryptic speciation. These data are in accord with niche conservatism, but whether the morphological stasis is a product of stabilizing selection or phylogenetic constraint is unknown.  相似文献   

12.
Evidence for Gondwanan vicariance in an ancient clade of gecko lizards   总被引:2,自引:0,他引:2  
Aim Geckos (Reptilia: Squamata), due to their great age and global distribution, are excellent candidates to test hypotheses of Gondwanan vicariance against post‐Gondwanan dispersal. Our aims are: to generate a phylogeny of the sphaerodactyl geckos and their closest relatives; evaluate previous phylogenetic hypotheses of the sphaerodactyl geckos with regard to the other major gecko lineages; and to use divergence date estimates to inform a biogeographical scenario regarding Gondwanan relationships and assess the roles of vicariance and dispersal in shaping the current distributions of the New World sphaerodactyl geckos and their closest Old World relatives. Location Africa, Asia, Europe, South America, Atlantic Ocean. Methods We used parsimony and partitioned Bayesian methods to analyse data from five nuclear genes to generate a phylogeny for the New World sphaerodactyl geckos and their close Old World relatives. We used dispersal–vicariance analysis to determine ancestral area relationships among clades, and divergence times were estimated from the phylogeny using nonparametric rate smoothing. Results We recovered a monophyletic group containing the New World sphaerodactyl genera, Coleodactylus, Gonatodes, Lepidoblepharis, Pseudogonatodes and Sphaerodactylus, and the Old World Gekkotan genera Aristelliger, Euleptes, Quedenfeldtia, Pristurus, Saurodactylus and Teratoscincus. The dispersal–vicariance analysis indicated that the ancestral area for this clade was North Africa and surrounding regions. The divergence between the New World spaherodactyl geckos and their closest Old World relative was estimated to have occurred c. 96 Myr bp . Main conclusions Here we provide the first molecular genetic phylogenetic hypothesis of the New World sphaerodactyl geckos and their closest Old World relatives. A combination of divergence date estimates and dispersal–vicariance analysis informed a biogeographical scenario indicating that the split between the sphaerodactyl geckos and their African relatives coincided with the Africa/South America split and the opening of the Atlantic Ocean. We resurrect the family name Sphaerodactylidae to represent the expanded sphaerodactyl clade.  相似文献   

13.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

14.
1. We used historical sources, morphology‐based taxonomy and mtDNA sequence data to address questions about the signal crayfish Pacifastacus leniusculus. These included evaluating unrecognised cryptic diversity and investigating the extent to which P. leniusculus may have been introduced within its presumed native range in the Pacific Northwest region of North America. Our study builds and expands on Pacific Northwest phylogeographic knowledge, particularly related to patterns of glacial refugia for freshwater species. 2. Extensive collections (824 specimens) from British Columbia (Canada), Idaho, Nevada, Oregon and Washington (United States) were used to characterise P. leniusculus at the mitochondrial 16S rRNA gene. Genetic groups within the species were elucidated by phylogenetics and amova ; evolutionary relationships within the most common and diverse group were investigated using a statistical parsimony haplotype network, a nested amova , and tests of isolation by distance. Morphological measurements were used to relate findings of molecular analyses to three historically recognised P. leniusculus subspecies and characterise cryptic diversity by morphology. 3. We found substantial cryptic diversity, with three groups highly distinct from P. leniusculus in discrete geographic regions: the Chehalis River glacial refugium, Central Oregon and the Okanagan Plateau. Disjunct distributions of P. leniusculus relative to these cryptic groups and known patterns of Pleistocene glaciation and landscape evolution cast doubt on whether P. leniusculus is native to some areas such as coastal drainages of northern Washington and southern British Columbia. Morphological traits previously used to characterise P. leniusculus subspecies still persist but may be incapable of distinguishing P. leniusculus from newly discovered cryptic groups. 4. Cryptic diversity found within P. leniusculus highlights the pressing need for a thorough investigation of the genus Pacifastacus using data based on more extensive gene and taxon sampling. It also warrants conservation attention, as introductions of P. leniusculus within the Pacific Northwest may carry risks of hybridisation and introgression for cryptic groups. Owing to high genetic diversity and limited dispersal capacity relative to more vagile organisms like freshwater fish, crayfish of the genus Pacifastacus offer powerful potential insights into the geological history and phylogeography of the Pacific Northwest region. Finally, by shedding light on the long‐neglected native range of P. leniusculus, our results should also better inform our understanding of potential source populations for, and the ecology of, this important invasive species in regions including Europe, Japan and elsewhere in North America.  相似文献   

15.
Sardines (Sardinops spp.) occupy temperate upwelling zones in the coastal regions of the Indian and Pacific Oceans, including locations in Japan, California, Chile, Australia, and South Africa. East and West Pacific populations are separated by vast expanses of open ocean, and northern and southern hemisphere populations are separated by tropical waters which are lethal to sardines. The relative importance of these barriers has been the focus of a longstanding debate between vicariance and dispersal schools in biogeography. Comparisons of a 500 bp fragment of the mitochondrial (mt) DNA control region reveal strong geographic structuring of mtDNA lineages but shallow divergence both within and between regional populations. Regional populations are related to one another in a stepping-stone pattern, the apparent result of a series of Pleistocene dispersal events around the continental margins of the Indian-Pacific Basin. These mtDNA data, combined with an electrophoretic survey of variability at 34 nuclear loci (Grant and Leslie 1996), indicate that the five regional forms of Sardinops (considered separate taxa by most authorities) probably diverged within 500,000 years BP, a much shorter timeframe than predicted by vicariance models based on plate tectonics. High mtDNA haplotype diversity, coupled with an excess of rare alleles in the protein electrophoretic dataset, may indicate exponential growth from a small ancestral population. The mtDNA and allozyme data are concordant with climate records and fossil evidence in portraying regional populations as recent, unstable, and ephemeral. Regional populations of sardines have probably been extinguished and recolonized over short evolutionary timescales in response to changes in climate and the oceanography of coastal upwelling zones.  相似文献   

16.
Traditional expectations for how widely and how often freshwater invertebrates disperse differ from empirical data. Freshwater invertebrates have been characterized as frequent, widespread dispersers, particularly those that are transported passively. Our review finds that this characterization may describe the potential for dispersal in some taxa, but it is not an accurate generalization for actual dispersal rates. High variance among habitats and taxonomic groups is a consistent theme. Advances in population genetics may help resolve these issues, but underlying assumptions should be carefully tested. Further, even unbiased estimates of gene flow may not equate with individual movement, because not all dispersers survive and reproduce. Some freshwater invertebrates may exist in classic Levins metapopulations. However, other species fit into a broader metapopulation definition, where temporal dispersal via diapause is functionally equivalent to spatial dispersal. In the latter case, local extinctions and rescue effects may be rare or absent. Finally, limited dispersal rates in many taxa suggest that theories of freshwater community assembly and structure can be made more robust by integrating dispersal and local processes as joint, contingent regulators. Recent research on freshwater invertebrate dispersal has substantially advanced our basic and applied understanding of freshwaters, as well as evolutionary ecology in general.  相似文献   

17.
Theories of plant speciation have generally recognized the importance of allopatry as a potential precursor to the genetic divergence of populations. The relative importance of long-distance dispersal vs. vicariance events in leading to allopatry, however, has been debated. We examined isozymic variability in highly disjunct populations of allotetraploid Asplenium adiantum-nigrum to test alternative hypotheses on their mode of origin. In addition, we assessed the genetic distinctness of the population from Boulder County, Colorado, which had been proposed as a separate species, A. andrewsii. Our results revealed that samples from all continental U.S. populations were isozymically identical and, with the exception of two samples from Boulder, displayed no intrapopulational variability. Continental U.S. populations were most similar to those from Hawaii, whereas both of these sets of populations were considerably more divergent from samples from Mexico and the Caucasus. The distribution of alleles and genotypes support the hypothesis that populations from different geographical regions had unique origins, resulting from at least several independent hybridization and polyploidization events followed by long-distance dispersal. These results have implications for speciation theory of pteridophytes in documenting the effectiveness of long-distance dispersal in the establishment of disjunct populations which may set the stage for allopatric speciation. In addition, the data suggest that the Boulder population is not sufficiently distinct to be considered a separate species.  相似文献   

18.
Aim The biogeography of western North American freshwater molluscs has traditionally been attributed to vicariance associated with late Tertiary rearrangement of landscape based on distributional evidence and the putatively limited dispersal ability of these organisms. We examined the phylogeography of a widely ranging western springsnail (Pyrgulopsis wongi Hershler, 1989) to test this hypothesis and evaluate the relative importance of vicariance and dispersal in structuring the distribution of this species. Location Southwestern Great Basin (California and Nevada), United States of America. Method Two mitochondrial genes (COI, NDI) were sequenced for 28 populations of P. wongi spanning its entire geographic range, which consists of 10 topographically closed drainage basins. We also sequenced eight closely related congeners, as well as the type species of the closely related eastern North American genus Floridobia Hershler & Thompson, 2002, which was used as the outgroup. Phylogenies based on the combined data set were obtained using several methods, and networks for each gene were generated as an additional means of examining relationships among haplotypes. Partitioning of haplotype variation was studied using amova , migration between populations was estimated using a coalescent‐based method (mdiv ), and divergence times were inferred using a locally calibrated molecular clock and mdiv . Results Pyrgulopsis wongi is subdivided into narrowly localized and widely distributed lineages that diverged in the Pleistocene, well after the inception of the contemporary regional landscape. While large ΦST values and the localized geographic distributions of most haplotypes imply absence or negligible contemporary dispersal of this spring‐dwelling snail, the pattern of phylogeographic structuring, presence of a few widespread haplotypes, and results of the mdiv analyses suggest geologically recent dispersal across drainage divides. Main conclusions Phylogeography of P. wongi conflicts with the traditional vicariance model as it is not structured by the contemporary landscape and is instead indicative of geologically recent dispersal. In the absence of evidence that dispersal of this species occurred through surface water connections during the relevant (Quaternary) time frame, we conjecture that spread may have instead been mediated by transport on waterfowl or via upland stream capture. The non‐concordance between phylogeography and landscape reported in this and other recent studies of Pyrgulopsis suggests that members of this diverse and imperiled genus should not be managed using an a priori, ‘watershed as conservation unit’ approach.  相似文献   

19.
Aim To test whether marine biogeographical patterns observed at the community level are also important within species. It is postulated that historical hydrogeographic barriers have driven in situ diversification. Location The intertidal and shallow subtidal zones of southern Australia, New Zealand and nearby islands. Australia's temperate marine communities are characterized by a high degree of endemism and show strong biogeographical structure along an east–west axis. Methods Phylogeographical analysis of the widespread asteriid sea‐star Coscinasterias muricata Verrill across southern Australia and New Zealand. Forty‐two samples from 27 locations were included in phylogenetic analyses of mitochondrial (CO1; control region) and nuclear (ITS2) DNA sequences. Results Analysis of mtDNA revealed a deep phylogenetic split within Australian C. muricata, strongly correlated with latitude. ‘Northern’ haplotypes (latitude ≤ 37.6° S, nine sites, 15 samples) were 7.3–9.4% divergent from ‘southern’ haplotypes (latitude ≥ 37.6° S, 19 sites, 27 samples), consistent with late Pliocene separation. Eastern and western representatives of the ‘northern’ clade were 0.5–1.0% divergent, probably reflecting Pleistocene isolation. The ‘southern’ clade of Australia is also represented in New Zealand, indicating Pleistocene oceanic dispersal. Nuclear DNA (ITS2) sequences yielded relatively little phylogenetic resolution, but were generally congruent with mtDNA‐based groupings. Main conclusions The phylogeographical pattern detected within Australian C. muricata closely resembles marine biogeographical groupings proposed on the basis of community and species distributions. Recurring evolutionary patterns may have been driven by the hydrographic history of southern Australia. Specifically, we suggest that Plio‐Pleistocene temperature change and the repeated opening and closure of Bass Strait promoted allopatric divergence and perhaps cryptic speciation in C. muricata.  相似文献   

20.
Zooplankton species are generally considered poor candidates for allopatric speciation because of their broad distributions and capabilities for long-distance dispersal. We examined the validity of this conclusion by determining both species distributions and the extent of gene frequency divergence in the Daphnia fauna of southeastern Australia, a mature landscape dominated by members of the carinata complex. Although delimitation of species boundaries was complicated by the prevalence of interspecific hybrids and variation in breeding systems, allozyme analysis of 187 populations indicated the presence of at least seven species. All of these species had restricted distributions, and several were narrowly endemic. Gene frequency divergence was often apparent between populations separated by only a few kilometers but was least prominent in species from inland areas. The extent of regional gene frequency shifts varied among species—two narrowly distributed (projecta, thomsoni) and one broadly distributed (carinata) species showed little divergence between sites, but two other common species (cephalata, longicephala) showed marked gene frequency shifts coincident with physiographic barriers. Together, the limited species distributions and regional gene-pool fragmentation suggest that allopatric speciation has played an important role in the origin of taxon diversity in the Daphnia carinata complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号