首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equisetum clarnoi is described from four silicified stem fragments and numerous small roots from the Eocene Clarno Chert of Jefferson County, Oregon. Stems are up to 8.0 mm in diam and have sunken stomata arranged vertically in a single line flanking each of the external biangulate stem ridges, features that clearly ally this species with the subgenus Hippochaete. External stem ridges are equal in number to the carinal hypodermal bands. The hypodermis is composed of fibers and has prominent carinal bands up to 0.75 mm long and shorter vallecular bands. Cortical parenchyma cells enclose prominent vallecular canals which are lined by specialized thick-walled parenchyma cells. The double, common endodermis has prominent casparian strips. Vascular bundles are composed of four to seven metaxylem tracheids flanking each side of the phloem and protoxylem tracheids which occur singly on the internal surface of the small carinal canals. Leaf sheaths in cross section have an adaxial fibrous layer and an external or near external fibrous bundle. Roots are up to 2.0 mm in diam and have paired cuboidal epidermal cells from which root hairs arise. The stele of the root is central and shows exarch primary xylem maturation. Equisetum clarnoi most closely resembles the extant Equisetum hyemale var. affine.  相似文献   

2.
Köhler L  Speck T  Spatz HC 《Planta》2000,210(5):691-700
 The mechanical properties of young stems of Aristolochia macrophylla Lam. and Aristolochia brasiliensis Mart. et Zucc. were studied during elongation growth and primary differentiation. Data for the modulus of elasticity, for the viscoelastic behaviour caused by longitudinal tension and for the shear modulus resulting from torsion around a longitudinal axis were related to the underlying structural changes by quantitative analysis of stem anatomy, tissue distribution, ultrastructure, and cell wall biochemistry. The orientation of cellulose microfibrils was determined by light microscopy and small-angle X-ray diffraction, and the lignin content was determined by thioglycolic acid derivatization and spectroscopic quantification. It was demonstrated that the increase in stability during early development is due to the complementary effects of increase in cell wall material, lignification, and cellulose microfibril alignment. A detailed micromechanical model, considering internal prestresses, is proposed to explain the characteristic biphasic stress-strain behaviour as well as the strain-hardening observed. Received: 22 March 1999 / Accepted 9 September 1999  相似文献   

3.
Gierlinger N  Sapei L  Paris O 《Planta》2008,227(5):969-980
Equisetaceae has been of research interest for decades, as it is one of the oldest living plant families, and also due to its high accumulation of silica up to 25% dry wt. Aspects of silica deposition, its association with other biomolecules, as well as the chemical composition of the outer strengthening tissue still remain unclear. These questions were addressed by using high resolution (<1 μm) Confocal Raman microscopy. Two-dimensional spectral maps were acquired on cross sections of Equisetum hyemale and Raman images calculated by integrating over the intensity of characteristic spectral regions. This enabled direct visualization of differences in chemical composition and extraction of average spectra from defined regions for detailed analyses, including principal component analysis (PCA) and basis analysis (partial least square fit based on model spectra). Accumulation of silica was imaged in the knobs and in a thin layer below the cuticula. In the spectrum extracted from the knob region as main contributions, a broad band below 500 cm−1 attributed to amorphous silica, and a band at 976 cm−1 assigned to silanol groups, were found. From this, we concluded that these protrusions were almost pure amorphous, hydrated silica. No silanol group vibration was detected in the silicified epidermal layer below and association with pectin and hemicelluloses indicated. Pectin and hemicelluloses (glucomannan) were found in high levels in the epidermal layer and in a clearly distinguished outer part of the hypodermal sterome fibers. The inner part of the two-layered cells revealed as almost pure cellulose, oriented parallel along the fiber.  相似文献   

4.
Summary Internodal metaphloem sieve elements located near the nodes of aerial stems ofEquisetum hyemale contain very oblique end walls. During maturation, the connections, or plasmodesmata, in these walls undergo little or no structural modification. By contrast, the endwall connections uniting the protoplasts of mature sieve elements elsewhere in the aerial stem ofE. hyemale are pores.This work as supported by U.S. National Science Foundation grant GB 31417 to R. F.Evert.  相似文献   

5.
The root apical meristem of Equisetum diffusum Don has a prominent four-sided pyramidal apical cell with its base (distal face) in contact with the root cap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The first division of a proximal merophyte is periclinal to the root surface separating a small inner cell from a larger outer cell. The inner cell is the precursor of the vascular cylinder. The larger outer cell is the precursor of the epidermis, cortex, endodermis, and pericycle. Radial sectors, established early in the development of the cortex, alternate with sectors in the vascular cylinder. These developmental steps show quite clearly that early root development in Equisetum is markedly different from that of most ferns.  相似文献   

6.
The hollow stem of Equisetum giganteum owes its mechanical stability to an outer ring of strengthening tissue, which provides stiffness and strength in the longitudinal direction, but also to an inner lining of turgid parenchyma, which lends resistance to local buckling. With a height >2.5 m isolated stems are mechanically unstable. However, in dense stands individual stems support each other by interlacing with their side branches, the typical growth habit of semi-self-supporters.  相似文献   

7.
濒危植物海南风吹楠营养器官解剖结构特征   总被引:1,自引:0,他引:1  
该研究采用石蜡切片和光学显微技术,对海南风吹楠营养器官的解剖结构及其对环境的适应性进行了探讨。结果表明:海南风吹楠为典型异面叶,叶片中脉发达,中部分化出髓,上表皮外侧具角质层,内侧具1层内皮层,下表皮外侧无角质层,有气孔器分布,气孔器为双环型,略下陷;栅栏组织3~4层细胞,海绵组织4~6层细胞。茎的初生结构中表皮轻微角质化,维管束为外韧型,8~10个初生维管束围绕髓排列为1轮;茎的次生结构中,表皮外部角质层加厚,维管柱紧密排列连成环状,次生韧皮部和次生木质部发达,形成层细胞3~5层。根的初生结构中表皮细胞外壁加厚,外皮层细胞体积大,形状不规则,内侧具1层形成层,内皮层具凯氏带,初生木质部为多原型,呈辐射状排列。根的次生结构中木栓层细胞5~6层,木栓层内侧具1层木栓形成层,栓内层细胞3层。海南风吹楠营养器官具有一定耐阴和耐旱结构特征,同时与其生活的热带雨林沟谷中高温荫湿的环境相适应。  相似文献   

8.
Flow velocity has an influence on the hydrodynamic and biomechanical properties, as well as on the morphology and the anatomy of the submerged water moss Fontinalis antipyretica Hedw. Cross-sections of the plant stems show two main types of tissues. The strengthening tissue in the outer part is characterized by thick-walled cells with a small lumen, the parenchyma in the centre by thin-walled cells with a large lumen. The specimens from habitats of different flow velocities differ in the proportions of the strengthening tissue and the branching angle of the leaves. A flow tank with a special sensitive two-component balance inserted into the bottom of the flume was used to measure the hydrodynamic drag, which acts on the plant stems at different flow velocities. The drag forces increase with the length of the plant. Mechanical properties such as elasticity and ultimate strength of the plant stems were tested in tension. Relating the data to the relative proportions of the strengthening tissue results in different estimates of Young's moduli for the strengthening tissue of plants from the different sites. The critical strains to which the stems can be extended are remarkably high. Loading and unloading cycles reveal viscoelastic behaviour of the stem tissues. In the first cycle plastic deformation is also observed, but only to a lesser degree in subsequent cycles.  相似文献   

9.
该研究用石蜡切片法比较观察了5种木贼科植物营养器官的内皮层及凯氏带,首次报道了2层内皮层及其凯氏带的形态特征及分布规律,并讨论各种类型的凯氏带及其与厚壁组织的协作防御机制。结果表明:(1)5种木贼的地下茎和根都只有1条凯氏带,其中4种木贼的地上茎有2条凯氏带。(2)木贼类营养器官具有3种凯氏带类型,即2层公共内皮层上各具有1条凯氏带、1层散生内皮层上的1条凯氏带、1层公共内皮层上的1条凯氏带。(3)木贼类地下茎和根都有发达的厚壁组织或致密的表皮。(4)问荆地上茎外侧内皮层具有复合内皮细胞。研究认为,木贼类植物凯氏带数量不能作为分类的依据;地下茎和根虽然只有1条凯氏带,但地下部分都有发达的厚壁组织或(和)与其紧密相连的表皮,推测厚壁组织或(和)表皮可能具有与凯氏带相同的功能;3种类型凯氏带的防御能力由强到弱依次是:2层公共内皮层上的凯氏带 1层散生内皮层上的凯氏带 1层公共内皮层上的凯氏带。  相似文献   

10.
The root apical meristem of Asplenium bulbiferum Forst. f. has a prominent four-sided pyramidal cell with its base in contact with the rootcap. Derivatives (merophytes) that contribute to the main body of the root are produced from the three proximal faces of the apical cell. The rootcap has its origin from the fourth (distal) face of the apical cell. The first division in a proximal merophyte is periclinal to the root surface, separating an outer cell and an inner cell. The outer cell is the origin of the outer part of the cortex and the epidermis; the larger inner cell is the origin of the inner cortex, endodermis, pericycle, and vascular tissue. After the establishment of the basic number of cells in a unilayered merophyte, the cells undergo transverse divisions forming longitudinal files of cells. The mitotic index of the apical cell indicates that it is not a quiescent cell. Also, the first plane of division in a newly formed merophyte dictates that the apical cell is the originator of merophytes.  相似文献   

11.
Summary Water flow in the stems of the horsetailEquisetum hyemale, the flowering plantStachys sylvatica and the mossDendroligotrichum dendroides was observed non-invasively using NMR microscopy. A Pulsed Gradient Spin Echo sequence using a single phase encoding step was used. We demonstrate by this method that water flow inEquisetum occurs in the carinal canals and in the xylem vessels of the vascular tissue ofStachys and in the central water-onducting strand ofDendroligotrichum.Abbreviations CPU central processing unit - ID internal diameter - NMR nuclear magnetic resonance - RF radio frequency - TS transverse section  相似文献   

12.
Spore wall morphogenesis of Equisetum arvense was observed by transmission electron microscopy. The spore wall of E. arvense consists of four layers: intine, exine, middle layer, and elater. The exine is formed after meiosis and consists of two distinct layers. The inner portion of the exine is formed in advance of the outer layer of the exine. The middle layer is deposited after the exine. The elater can be subdivided into two distinct layers. The inner layer comprises longitudinal microfibrils that surround the spore in spiral fashion. The elater appears as thin beltlike structures at the beginning of development. Numerous microtubules were observed on the inner surface of the plasmodial plasma membrane opposite the inner layer of the elater, suggesting that these microtubules are involved with the synthesis of inner elater microfibrils. The matrix of the outer elater is formed by discharge of granules from the plasmodial cytoplasm. The intine is the last component of the sporoderm to be formed.  相似文献   

13.
We tested Wilhelm Hofmeister's hypothesis that the outer layers of herbaceous stem tissues are held in a preferential state of longitudinal tension by more internal stem tissues that are held in a reciprocal state of compression. We measured (1) the biaxial stiffness of dandelion peduncles that were barometrically inflated with a Scholander pressure bomb, and (2) the stiffness and mechanical behavior of different layers of tissues that were surgically manipulated as longitudinal strips placed in uniaxial tension. Hofmeister's hypothesis predicts that stems will shorten and expand in girth as their volume transiently increases (due to barometric or hydrostatic inflation), that they will longitudinally rupture when excessively inflated, and that the principal stiffening agents in their outer tissues will be aligned in the longitudinal direction with respect to stem length. Our experiments confirmed these predictions: (1) the longitudinal strains observed for inflated peduncles were negative and smaller than the circumferential strains such that stems contracted in length and expanded in girth, (2) peduncles longitudinally ruptured when excessively inflated, (3) surgical experiments indicated that the epidermis was stiffer in longitudinal tension than any other immature peduncle tissue and was as stiff as any other tissue region in mature stems, and (4) microscopic analyses showed that the net orientation of cellulose microfibrils in the cell walls of the outer region of stem tissues was parallel to stem length. A strong positive correlation existed between the tensile stiffness of tissues and the net orientation of cell wall microfibrils.  相似文献   

14.
Predictions from a mechanical model for hollow vertical stems are tested against morphometric and mechanical studies of the vertical stems of Equisetum hyemale. The model predicts 1) that the wall thickness of hollow internodes must be at least 15% of the external radius of shoots, 2) that the elastic modulus of stems is quantitatively related to the ratio of apoplast (cell walls) to symplast (cytoplasm) areas in transverse sections through stems, and that (3) hollow stems are designed to sustain an additional and significant proportion of their own weight. The “safety factors” predicted for a hollow vertical stem are used to examine two adaptationist explanations for hollow stems: 1) “economy in design,” which argues that natural selection will favor a reduction in the metabolic cost in constructing an organ, and 2) “mechanical design,” which argues that stems are designed to maximize their mechanical stability during vertical growth. Evidence from E. hyemale indicates that 1) there is a developmental limit to the maximum allotment of biomass invested in the construction of stems, 2) as stem height increases, morphometric adjustments in internodal wall thickness occur which converge on predicted safety limits, and 3) the elastic modulus of stems changes as a function of the ratio of apoplast to symplast areas seen in transverse sections through shoots. Biomechanical and developmental evidence and the allometry of E. hyemale stems are consistent with the view that stems are designed for safety and are inconsistent with some predictions based on the economy in design.  相似文献   

15.
Silicon Compounds in Xylem Exudates of Plants   总被引:1,自引:0,他引:1  
An account is given of a study of silicon compounds in the xylemexudates of Equisetum hyemale and Zea mays. When fractionatedby gel filtration the compounds behaved as silicic acid andnot as an organo-silicon complex.  相似文献   

16.
R. Buckley 《Plant and Soil》1982,66(3):417-421
Summary The root sheath of the arid zone grassZygochloa paradoxa comprises a dense cylinder of sand grains held mainly by short twisted root hairs. The sand sheath and hypodermal sleeve enclose a thick cortex with a sclerenchymatous inner zone and a partially disintegrated aerenchymatous outer zone. The outer tube comprising sheath and hypodermal sleeve is largely impermeable to water and its primary function is probably to insulate the stele against moisture loss during translocation.  相似文献   

17.
18.
Summary The secondary cell wall layer of the young root hair ofEquisetum hyemale (L) has a helicoidal texture. The cortical microtubules in these hairs maintain an axial alignment while microfibrils are being deposited with a different orientation in each subsequent layer. The role of cortical microtubules in microfibril orientation is disputed.I gratefully acknowledge the support of Professor Dr. M. M. A.Sassen and the technical assistance of M.Wolters-Arts.  相似文献   

19.
Mechanical properties of brain tissue in tension   总被引:15,自引:0,他引:15  
This paper contains experimental results of in vitro, uniaxial tension of swine brain tissue in finite deformation as well as proposes a new hyper-viscoelastic constitutive model for the brain tissue. The experimental results obtained for two loading velocities, corresponding to strain rates of 0.64 and 0.64 x 10(-2)s(-1), are presented. We believe that these are the first ever experiments of this kind. The applied strain rates were similar to those applied in our previous study, focused on explaining brain tissue properties in compression. The stress-strain curves are convex downward for all extension rates. The tissue response stiffened as the loading speed increased, indicating a strong stress-strain rate dependence. Swine brain tissue was found to be considerably softer in extension than in compression. Previously proposed in the literature brain tissue constitutive models, developed based on experimental data collected in compression are shown to be inadequate to explain tissue behaviour in tension. A new, non-linear, viscoelastic model based on the generalisation of the Ogden strain energy hyper-elastic constitutive equation is proposed. The new model accounts well for brain tissue deformation behaviour in both tension and compression (natural strain in <-0.3,0.2>) for strain rates ranging over five orders of magnitude.  相似文献   

20.
Summary Selected nuclear and cytoplasmic changes associated with early differentiation of four cell-types—dermatogen, inner and outer cortex, and endodermis—have been analysed using montages of electron micrographs of median longitudinal sections of young roots ofAzolla pinnata. The area fraction of nucleoplasm occupied by chromocentres (CAF) is smaller in the apical cell than in the nuclei of its most recently formed daughter cells. The CAF also differs between the four cell-types: dermatogen nuclei have a lesser mean CAF and smaller chromocentres than nuclei of the endodermis; cortical cell nuclei have intermediate values. These differences may reflect changes in nuclear activity during cell differentiation. The area fraction occupied by the vacuome (VAF) differs between the apical cell and its daughters: the apical cell seems to retain most of the vacuome at division, while the daughter cells receive less vacuolate cytoplasm. Of the four cell-types analysed, the cortical cells develop a large VAF the quickest; the dermatogen is slower to become vacuolate. Cells in the dermatogen and outer cortex derive from common mother cells, as do cells in the endodermis and inner cortex, and even the most recently-formed cells in the files of inner and outer cortex are more vacuolated than their sister cells in the other two celltypes. The onset of vacuolation may be triggered by an inductive influence emanating from older vacuolated cells in the same file. The rate of vacuolation in each of the cell-types examined may also be negatively correlated to the intensity of synthesis of protein used to construct cytoplasmic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号