首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selective maintenance of gynodioecy depends on the relative fitness of the male-sterile (female) and hermaphroditic morphs. Females may compensate for their loss of male fitness by reallocating resources from male function (pollen production and pollinator attraction) to female function (seeds and fruits), thus increasing seed production. Females may also benefit from their inability to self-fertilize if selfing and inbreeding depression reduce seed quality in hermaphrodites. We investigated how differences in floral resource allocation (flower size) between female and hermaphroditic plants affect two measures of female reproductive success, pollinator visitation and pollen receipt, in gynodioecious populations of Geranium richardsonii in Colorado. Using emasculation treatments in natural populations, we further examined whether selfing by autogamy and geitonogamy comprises a significant proportion of pollen receipt by hermaphrodites. Flowers of female plants are significantly smaller than those of hermaphrodites. The reduction in allocation to pollinator-attracting structures (petals) is correlated with a significant reduction in pollinator visitation to female flowers in artificial arrays. The reduction in attractiveness is further manifested in significantly less pollen being deposited on the stigmas of female flowers in natural populations. Autogamy is rare in these protandrous flowers, and geitonogamy accounts for most of the difference in pollen receipt between hermaphrodites and females. Female success at receiving pollen was negatively frequency dependent on the relative frequency of females in populations. Thus, two of the prerequisites for the maintenance of females in gynodioecious populations, differences in resource allocation between floral morphs and high selfing rates in hermaphrodites, occur in G. richardsonii.  相似文献   

2.
The spatial distribution of females and hermaphrodites within gynodioecious populations is expected to exert considerable selective pressure on gender fitness through pollen limitation of seed set. If pollen flow is predominantly local, seed set in individual plants may be sensitive to the proximity of pollen donors; pollen limitation of seed set may occur if hermaphrodites are locally rare. Under such circumstances, female fitness will be negatively frequency dependent and hermaphrodite fitness will be positively frequency dependent. Given local seed dispersal, a nonrandom clumped distribution of the genders is expected in gynodioecious populations due to the heritability of gender in gynodioecious species. If gender fitness is frequency dependent, such structure should favor hermaphrodites and select against females. To test this hypothesis, I quantified the distribution of the genders in terms of nearest neighbors and neighborhood sex ratio in two populations of gynodioecious Sidalcea malviflora malviflora. I then measured the effect of neighborhood sex ratio on open-pollinated seed set and pollen limitation in both manipulated and unmanipulated neighborhoods. Results indicate that the genders have a patchy distribution and that both genders are pollen limited and show an increase in seed set with an increase in neighborhood hermaphrodite frequency. The observed population sex structure favors hermaphrodites and disadvantages females. These results highlight the importance that population-level traits can have in determining individual fitness and the evolution of sex ratios in gynodioecious species.  相似文献   

3.
Seed production and patterns of sex allocation were studied in female and hermaphroditic plants in two gynodioecious populations of Geranium sylvaticum (Geraniaceae). Females produced more flower buds and seeds than hermaphrodites in one of the two study populations. The other female traits measured (pistil biomass, seed number per fruit, individual seed mass) did not differ between the gender morphs. The relative seed fitness of hermaphrodites differed between the study populations, with hermaphrodites gaining less of their fitness through female function in the population with a high frequency of females. However, the amount and size of pollen produced by hermaphrodites did not differ between populations. The number of flower buds was positively correlated with seed production in females, whereas in hermaphrodites a positive correlation between number of buds and seed production was found in only one of the two study populations. These results suggest that fitness gain through female function is labile in hermaphrodites of this species, and is probably affected by environmental factors such as the sex ratio of the population.  相似文献   

4.
5.
Gynodioecious populations consist of separate hermaphroditic and female individuals. Females are at a selective disadvantage because they contribute genes to the next generation only through ovules, while hermaphrodites contribute genes through ovules and pollen. For females to be maintained in populations they must have some compensating selective advantage. The outcrossing hypothesis postulates that females are maintained because their progeny result from obligate outcrossing, whereas some of the progeny of hermaphrodites result from self-fertilization and are less fit because of inbreeding depression. If correct, the frequency of females should be positively correlated with selfing rates of hermaphrodites in populations. We found a strong positive correlation between female frequency and selfing rates of hermaphrodites (r = 0.91, P < 0.01) in eight gynodioecious populations of Hawaiian species of Bidens. Our results confirm that the obligate outcrossing of females is a major factor maintaining females in gynodioecious populations. However, the observed selfing rates are insufficient by themselves to account for the frequency of females in these populations.  相似文献   

6.
Gynodioecy is a dimorphic breeding system in which female individuals coexist with hermaphroditic individuals in the same population. Females only contribute to the next generation via ovules, and many studies have shown that they are usually less attractive than hermaphrodites to pollinators. Several mechanisms have been proposed to explain how females manage to persist in populations despite these disadvantages. The ‘resource reallocation hypothesis’ (RRH) states that females channel resources not invested in pollen production and floral advertisement towards the production of more and/or larger seeds. We investigated pollination patterns and tested the RRH in a population of Thymus vulgaris. We measured flower display, flower size, nectar production, visitation rates, pollinator constancy and flower lifespan in the two morphs. In addition, we measured experimentally the effects of pollen and resource addition on female reproductive success (fruit set, seed set, seed weight) of the two morphs. Despite lower investment in floral advertisement, female individuals were no less attractive to pollinators than hermaphrodites on a per flower basis. Other measures of pollinator behaviour (number of flowers visited per plant, morph preference and morph constancy) also showed that pollinators did not discriminate against female flowers. In addition, stigma receptivity was longer in female flowers. Accordingly, and contrary to most studies on gynodioecious species, reproductive success of females was not pollen limited. Instead, seed production was pollen limited in hermaphrodites, suggesting low levels of cross‐pollination in hermaphrodites. Seed production was resource limited in hermaphrodites, but not in females, thus providing support for the RRH. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 395–408.  相似文献   

7.
In gynodioecious species, females coexist with hermaphrodites in natural populations even though hermaphrodites attract more pollinators, are capable of reproducing through pollen, and can self-fertilize. This study tests the hypothesis that inbreeding depression helps to maintain females in natural populations. It also examines whether gender lineages that differ in selfing rates might experience different levels of inbreeding depression. Female and hermaphroditic lineages of the gynodioecious species Geranium maculatum were used in self, sib-cross and outcross experiments to examine inbreeding depression levels and to determine whether these levels differ between hermaphroditic and female lineages. Six fitness correlates were measured in the greenhouse and compared among pollination types and between genders. Severe inbreeding depression was found for both individual fitness traits and cumulative fitness in early life history stages. Inbreeding depression levels were slightly higher in hermaphroditic than in female lineages, but this difference was not statistically significant. Because females are unable to self-pollinate and are less likely to experience inbreeding than hermaphrodites under natural conditions, these results suggest that severe inbreeding depression could confer a selective advantage for females that could help to maintain females in natural populations.  相似文献   

8.
Differences between plant sex morphs in pollen or resource availability may affect their relative fitness and thereby the sex ratio of dimorphic species. In gynodioecious species, in which hermaphroditic and female plants coexist, a variety of factors (e.g., hermaphrodite self-fertility or rarity or pollinator discrimination against females) might be expected to lead to stronger pollen limitation in females than in hermaphrodites. On the other hand, females have been found to be superior compared to hermaphrodites in low-nutrient conditions. The effects of supplemental hand-pollination and resource addition on the reproductive output of the self-fertile gynodioecious perennial Geranium sylvaticum (Geraniaceae) were tested for several populations that differ in their female frequency (4.4-23.0%). Both pollen and resource availability limited fruit set and the number of seeds produced per plant; however, seed set (i.e., the number of seeds produced per fruit) was limited only by resources. Because pollen limitation in females did not correlate with female frequency, our results suggest that pollen limitation in females does not depend on the frequency of the pollen-producing hermaphrodites. Furthermore, because pollen and resource availability limited reproductive output of both sex morphs, these factors may not contribute significantly to maintenance and evolution of gynodioecy in G. sylvaticum.  相似文献   

9.
Abstract In gynodioecious plants, hermaphrodite and female plants co‐occur in the same population. In these systems gender typically depends on whether a maternally inherited cytoplasmic male sterility factor (CMS) is counteracted by nuclear restorer alleles. These restorer alleles are often genetically dominant. Although plants of the female morph are obligatorily outcrossing, hermaphrodites may self. This selfing increases homozygosity and may thus have two effects: (1) it may decrease fitness (i.e. result in inbreeding depression) and (ii) it may increase homozygosity of the nuclear restorer alleles and therefore increase the production of females. This, in turn, enhances outcrossing in the following generation. In order to test the latter hypothesis, experimental crosses were conducted using individuals derived from four natural populations of Silene vulgaris, a gynodioecious plant. Treatments included self‐fertilization of hermaphrodites, outcrossing of hermaphrodites and females using pollen derived from the same source population as the pollen recipients, and outcrossing hermaphrodites and females using pollen derived from different source populations. Offspring were scored for seed germination, survivorship to flowering and gender. The products of self‐fertilization had reduced survivorship at both life stages when compared with the offspring of outcrossed hermaphrodites or females. In one population the fitness of offspring produced by within‐population outcrossing of females was significantly less than the fitness of offspring produced by crossing females with hermaphrodites from other populations. Self‐fertilization of hermaphrodites produced a smaller proportion of hermaphroditic offspring than did outcrossing hermaphrodites. Outcrossing females within populations produced a smaller proportion of hermaphrodite offspring than did crossing females with hermaphrodites from other populations. These results are consistent with a cytonuclear system of sex determination with dominant nuclear restorers, and are discussed with regard to how the mating system and the genetics of sex determination interact to influence the evolution of inbreeding depression.  相似文献   

10.
In gynodioecious species, in which hermaphroditic and female plants co-occur, the maintenance of sexual polymorphism relies on the genetic determination of sex and on the relative fitness of the different phenotypes. Flower production, components of male fitness (pollen quantity and pollen quality) and female fitness (fruit and seed set) were measured in gynodioecious Beta vulgaris spp. maritima, in which sex is determined by interactions between cytoplasmic male sterility (CMS) genes and nuclear restorers of male fertility. The results suggested that (i) female had a marginal advantage over hermaphrodites in terms of flower production only, (ii) restored CMS hermaphrodites (carrying both CMS genes and nuclear restorers) suffered a slight decrease in fruit production compared to non-CMS hermaphrodites and (iii) restored CMS hermaphrodites were poor pollen producers compared to non-CMS hermaphrodites, probably as a consequence of complex determination of restoration. These observations potentially have important consequences for the conditions of maintenance of sexual polymorphism in B. vulgaris and are discussed in the light of existing theory on evolutionary dynamics of gynodioecy.  相似文献   

11.
We determined female frequency of 23 populations of the gynodioecious Geranium sylvaticum (Geraniaceae) in Finland. We compared our results to previous results on this species from the 1960s in order to reveal putative changes in female frequencies. Because females may be maintained in gynodioecious populations if their seed production or offspring quality is higher than that of hermaphrodites, we explored reproductive success of females and hermaphrodites in detail in 11 populations for two consecutive years. Female frequencies varied from 0.4 to 27.2%; this variation is similar to that observed in the 1960s. Contrary to previous results that indicated lower seed production in females, females produced 1.2 and 1.7 times more seeds per flower than hermaphrodites in 2000 and 2001, respectively. Females also had higher fruit set than hermaphrodites. Thus, higher seed production of females partly explains the maintenance of gynodioecy in this species. Furthermore, female frequency correlated negatively with relative seed fitness of hermaphrodites suggesting that relative seed fitness is related to population sex ratio. Female frequency and the distance of the population from the most southern population also tended to correlate positively, suggesting that harsher environmental conditions in the north may benefit female plants. Given the observed yearly variation, our results also highlight the importance of temporal variation for the relative seed fitness of females and hermaphrodites.  相似文献   

12.
One evolutionary pathway from plants with combined male and female functions (hermaphroditism) to those with separate sexes (dioecy) involves females coexisting with hermaphrodites (gynodioecy). The research presented here explores sex allocation in Fragaria virginiana (a gynodioecious wild strawberry), within the context of theory on the gynodioecy–dioecy transition. By growing clonally replicated plants in the greenhouse and surveying six populations in situ, I evaluated the effects of plant size, genotype, sexual identity, population of origin and female frequency on sex allocation. I found significant positive effects of plant size on most sex allocation traits studied. In addition to strong sex-specific allocation patterns, I found significant broad-sense heritabilities for all traits, suggesting that plants could respond to selection. Moreover, there was a negative genetic correlation between pollen production and fruit set per flower within hermaphrodites, lending support to a basic assumption of sex allocation theory. On the other hand, several sex allocation traits, namely pollen and ovules per flower in hermaphrodites, were positively genetically correlated, suggesting that they may act to constrain the evolution of sexual dimorphism. Populations differed in the frequency of females, and females were more prevalent on sites with lower soil moisture and where hermaphrodites were least likely to produce fruit, suggesting that females’ seed fitness relative to that of hermaphrodites may be strongly environment-dependent in this species.  相似文献   

13.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

14.
 A valuable approach to understanding the evolution of gender dimorphism involves studies of single species that exhibit intraspecific variation in sexual systems. Here we survey sex ratios in 35 populations of Wurmbea biglandulosa, previously described as hermaphroditic. We found pronounced intraspecific variation in sexual systems; populations in the northeastern part of the species' range were hermaphroditic, whereas other populations were gynodioecious and contained 2–44% females. Populations with lower annual rainfall were more likely to be gynodioecious, supporting the view that gender dimorphism evolves more frequently in harsher environments. In gynodioecious populations, however, female frequency was not related to either annual rainfall or habitat, indicating that other factors are important in determining sex ratio variation. Females had smaller flowers and shorter stems than did hermaphrodites, potentially providing a basis for resource compensation. A female fecundity advantage may contribute to the maintenance of females in populations because females produced more ovuliferous flowers and had more ovules per flower than did hermaphrodites. Received March 2, 2001 Accepted February 25, 2002  相似文献   

15.
Recent theoretical models have addressed the influence of metapopulation dynamics on the fitness of females and hermaphrodites in gynodioecious plants. In particular, selection is thought to favor hermaphrodites during population establishment because that sex should be less prone to pollen limitation, especially if self-fertilization is possible. However, inbreeding depression could limit this advantage. In this experimental study of Silene vulgaris, a weedy gynodioecious plant, the fitness of females and hermaphrodites was estimated from seed production in both mixed-sex populations and for individuals isolated from these populations by 20, 40, 80, or 160 m. In mixed populations females display statistically significant greater per capita seed production owing to higher capsule production and higher rates of seed germination. The fitness of both sexes declines with increasing isolation, but at different rates, such that in the 160-m treatment hermaphrodites are by far the more fit sex. Allozyme studies suggest that this differential decline is because the selfing rate in hermaphrodites increases as a function of isolation, at least partially compensating for a decline in the availability of outcross pollen. Overall, the negative effects of pollen limitation on females far outweighs the negative effects of inbreeding depression following selfing in hermaphrodites. Thus, extinction/recolonization dynamics would appear to favor hermaphrodites as long as seed dispersal events exceed some critical distance.  相似文献   

16.
According to sex allocation theory, to maintain a mutant male-sterile plant in a population of hermaphrodites such a plant must compensate its loss of fitness caused by inhibition of pollen production with a higher reproductive success through its female function. In the present study of a gynodioecious population of Silene vulgaris (Caryophyllaceae) I show that hermaphrodites not only benefit from outcrossing, in that progeny from outcrossed flowers are more vigorous than those from selfed flowers within an individual plant, but they also suffer heavily from self-pollination between different flowers of the same individuals, which could be demonstrated in experimentally made male-sterile (emasculated) individuals. Seeds from the emasculation period were heavier and germinated better than when the same individual was an intact hermaphrodite. Naturally male-sterile (female) individuals produced more fruits due to flowers staying open longer for pollen to arrive via some vector. However, the higher seed number alone could not provide the fitness advantage needed for females to be maintained in the population, but females also produced heavier seeds as compared to the hermaphrodites. Differences in seed survival and seedling establishment in the field are expected to add the advantages necessary for female plants to be selectively plausible.  相似文献   

17.
Selection is frequency dependent when an individual's fitness depends on the frequency of its phenotype. Frequency‐dependent selection should be common in gynodioecious plants, where individuals are female or hermaphroditic; if the fitness of females is limited by the availability of pollen to fertilize their ovules, then they should have higher fitness when rare than when common. To test whether the fitness of females is frequency dependent, we manipulated the sex ratio in arrays of gynodioecious Lobelia siphilitica. To test whether fitness was frequency dependent because of variation in pollen availability, we compared open‐pollinated and supplemental hand‐pollinated plants. Open‐pollinated females produced more seeds when they were rare than when they were common, as expected if fitness is negatively frequency dependent. However, hand‐pollinated females also produced more seeds when they were rare, indicating that variation in pollen availability was not the cause of frequency‐dependent fitness. Instead, fitness was frequency dependent because both hand‐ and open‐pollinated females opened more flowers when they were rare than when they were common. This plasticity in the rate of anthesis could cause fitness to be frequency dependent even when reproduction is not pollen limited, and thus expand the conditions under which frequency‐dependent selection operates in gynodioecious species.  相似文献   

18.
Plants of Lycium californicum, L. exsertum, and L. fremontii produce flowers that are either male-sterile (female) or hermaphroditic, and populations are morphologically gynodioecious. As is commonly found in gynodioecious species, flowers on female plants are smaller than those on hermaphrodites for a number of floral traits. Floral size dimorphism has often been hypothesized to be the result of either a reduction in female flower size that allows reallocation to greater fruit and seed production, or an increase in hermaphroditic flower size due to the increased importance of pollinator attraction and pollen export for hermaphroditic flowers. We provide a test of these two alternatives by measuring 11 floral characters in eight species of Lycium and using a phylogeny to reconstruct the floral size shifts associated with the evolution of gender dimorphism. Our analyses suggest that female flowers are reduced in size relative to the ancestral condition, whereas flowers on hermaphrodites have changed only slightly in size. Female and hermaphroditic flowers have also diverged both from one another and from ancestral cosexual species in several shape characteristics. We expected sexual dimorphism to be similar among the three dimorphic taxa, as gender dimorphism evolved only a single time in the ancestor of the American dimorphic lineage. While the floral sexual dimorphism is broadly similar among the three dimorphic species, there are some species-specific differences. For example, L. exsertum has the greatest floral size dimorphism, whereas L. fremontii had the greatest size-independent dimorphism in pistil characters. To determine the degree to which phylogenetic uncertainty affected reconstruction of ancestral character states, we performed a sensitivity analysis by reconstructing ancestral character states on alternative topologies. We argue that investigations such as this one, that examine floral evolution from an explicitly phylogenetic perspective, provide new insights into the study of the evolution of floral sexual dimorphism.  相似文献   

19.
Dioecy, a breeding system where individual plants are exclusively male or female, has evolved repeatedly. Extensive theory describes when dioecy should arise from hermaphroditism, frequently through gynodioecy, where females and hermaphrodites coexist, and when gynodioecy should be stable. Both pollinators and herbivores often prefer the pollen‐bearing sex, with sex‐specific fitness effects that can affect breeding system evolution. Nursery pollination, where adult insects pollinate flowers but their larvae feed on plant reproductive tissues, is a model for understanding mutualism evolution but could also yield insights into plant breeding system evolution. We studied a recently established nursery pollination interaction between native Hadena ectypa moths and introduced gynodioecious Silene vulgaris plants in North America to assess whether oviposition was biased toward females or hermaphrodites, which traits were associated with oviposition, and the effect of oviposition on host plant fitness. Oviposition was hermaphrodite‐biased and associated with deeper flowers and more stems. Sexual dimorphism in flower depth, a trait also associated with oviposition on the native host plant (Silene stellata), explained the hermaphrodite bias. Egg‐receiving plants experienced more fruit predation than plants that received no eggs, but relatively few fruits were lost, and egg receipt did not significantly alter total fruit production at the plant level. Oviposition did not enhance pollination; egg‐receiving flowers usually failed to expand and produce seeds. Together, our results suggest that H. ectypa oviposition does not exert a large fitness cost on host plants, sex‐biased interactions can emerge from preferences developed on a hermaphroditic host species, and new nursery pollination interactions can arise as negative or neutral rather than as mutualistic for the plant.  相似文献   

20.
Fine scale spatial structure (FSSS) of cytoplasmic genes in plants is thought to be generated via founder events and can be amplified when seeds germinate close to their mother. In gynodioecious species these processes are expected to generate FSSS in sex ratio because maternally inherited cytoplasmic male sterility genes partially influence sex expression. Here we document a striking example of FSSS in both mitochondrial genetic markers and sex in roadside populations of Silene vulgaris. We show that in one population FSSS of sexes influences relative fruit production of females compared to hermaphrodites. Furthermore, FSSS in sex ratio is expected to persist into future generations because offspring sex ratios from females are female-biased whereas offspring sex ratios from hermaphrodites are hermaphrodite-biased. Earlier studies indicated that pollen limitation is the most likely mechanism underlying negative frequency dependent fitness of females. Our results support the theoretical predictions that FSSS in sex ratio can reduce female fitness by decreasing the frequency at which females experience hermaphrodites. We argue that the influence of FSSS on female fitness is complementary to the influence of larger scale population structure on female fitness, and that population structure at both scales will act to decrease female frequencies in gynodioecious species. Better comprehension of the spatial structure of genders and genes controlling sex expression at a local scale is required for future progress toward understanding sex ratio evolution in gynodioecious plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号