首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Bu XD  Li N  Tian XQ  Huang PL 《Tissue & cell》2011,43(3):201-206
To compare the differences in MUC2 and MUC5AC mRNA among four colon cancer cell lines and to identify the best in vitro models for studying mucin expression, quantitative real-time polymerase chain reaction was used to measure the expression of MUC2 and MUC5AC mRNA in Caco-2, HT29, LoVo, and LS174T cell lines. The levels of MUC2 mRNA expression in the four colon cancer cell lines ranked in order of mRNA abundance were: LS174T > LoVo > HT-29 > Caco-2. In contrast to MUC2, the abundances of MUC5AC mRNA were in the order: Caco-2 > HT-29 > LS174T > LoVo. Caco-2 (highest level of MUC5AC mRNA) and LS174T (highest level of MUC2 mRNA) were used to investigate the phenotypes. Morphologically, Caco-2 cells were larger with low electron density mucus-storing vacuoles, many cell surface microvilli, and no obvious intercellular spaces between cells, compared to LS174T cells. The proliferative and invasive capacities of LS174T cells were significantly higher than those of Caco-2 cells. Caco-2 and LS174T cells provide excellent in vitro models for studying mucin expression in colon cancer.  相似文献   

2.
Mucin expression was studied during proliferation and differentiation of the enterocyte-like Caco-2 and goblet cell-like LS174T cell lines. Caco-2 cells express mRNAs of MUC1, MUC3, MUC4 and MUC5A/C whereas MUC2 and MUC6 mRNAs are virtually absent. Furthermore, MUC3 mRNA is expressed in a differentiation dependent manner, as is the case for enterocytes. Concomitantly MUC3 protein precursor (550 kDa) was detected in Caco-2 cells. In LS174T cells mucin mRNAs of MUC1, MUC2 and MUC6 are constitutively expressed at high levels, whereas MUC3, MUC4 and MUC5A/C mRNAs are present at low levels. At the protein level LS174T cells express the goblet cell specific mucin protein precursors MUC2, MUC5A/C and MUC6 with apparent molecular masses of about 600 kDa, 470/500 kDa and 400 kDa respectively. MUC3 protein is not detectable. Furthermore, human gallbladder mucin protein (470 kDa precursor), of which the gene has not yet been identified, is expressed in LS174T cells. In addition, synthesis and secretion of the goblet cell specific mature MUC2, MUC5A/C and human gallbladder mucin was demonstrated in LS174T cells. It is concluded that Caco-2 and LS174T cell lines provide excellentin vitro models to elucidate the cell-type specific mechanisms responsible for mucin expression.Abbreviations SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - DMEM Dulbecco's modified Eagle's medium - EMEM Eagle's minimum essential medium - Endo-H endo--N-acetylglucosaminidase H - HGBM human gallbladder mucin - dpc days past confluence - PBS phosphate buffered saline  相似文献   

3.
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen and tightly adheres to human colonic epithelium by forming attaching/effacing lesions. To reach the epithelial surface, EHEC must penetrate the thick mucus layer protecting the colonic epithelium. In this study, we investigated how EHEC interacts with the intestinal mucus layer using mucin‐producing LS174T colon carcinoma cells and human colonic mucosal biopsies. The level of EHEC binding and attaching/effacing lesion formation in LS174T cells was higher compared to mucin‐deficient colon carcinoma cell lines, and initial adherence was independent of the presence of flagellin, Escherichia coli common pilus, or long polar fimbriae. Although EHEC infection did not affect gene expression of secreted mucins, it resulted in reduced MUC2 glycoprotein levels. This effect was dependent on the catalytic activity of the secreted metalloprotease StcE, which reduced the inner mucus layer and thereby promoted EHEC access and binding to the epithelium in vitro and ex vivo. Given the lack of efficient therapies against EHEC infection, StcE may represent a suitable target for future treatment and prevention strategies.  相似文献   

4.
Production of MUC1 and MUC2 mucins by human tumor cell lines.   总被引:2,自引:0,他引:2  
A mucus secreting, clonal derivative (HT29-SB) of the human colonic adenocarcinoma cell line HT29, and the LS174T colon cancer cell line, secrete mucin into the culture medium as a viscoelastic gel. Mab BC2, which defines a peptide epitope present in the variable number of tandem repeats (VNTR) of the MUC1 core protein, reacted with this material after deglycosylation. Two high molecular weight bands were detected in TFMSA treated gel-formed mucin from HT29-SB and LS174T by western blotting (Mr 580 kDa and 420 kDa). A similar pattern of reactivity was seen with the culture supernatants from HT29-SB, the ovarian tumor cell line COLO-316, and the breast cancer cell line MCF-7. Mab CCP58 (anti-MUC2 VNTR) reacted with a 580 kDa band in gel-formed mucin produced by LS174T, but was not reactive with mucin produced by the other cell lines. The findings indicate that human colonic cell lines, in addition to breast and ovarian cell lines, may both express and secrete the MUC1 protein core, and that the LS174T cell line expresses and secretes both the MUC1 and MUC2 core proteins.  相似文献   

5.
6.
The membrane-bound mucins, MUC17 (human) and Muc3 (mouse), are highly expressed on the apical surface of intestinal epithelia and are thought to be cytoprotective. The extracellular regions of these mucins contain EGF-like Cys-rich segments (CRD1 and CRD2) connected by an intervening linker domain (L). The purpose of this study was to determine the functional activity of human MUC17 membrane-bound mucin.MethodsEndogenous MUC17 was inhibited in LS174T colon cells by stable transfection of a small hairpin RNA targeting MUC17 (LSsi cells). The effect of recombinant MUC17-CRD1-L-CRD2 protein on migration, apoptosis, and experimental colitis was determined.ResultsReduced MUC17 expression in LSsi cells was associated with visibly reduced cell aggregation, reduced cell–cell adherence, and reduced cell migration, but no change in tumorigenicity. LSsi cells also demonstrated a 3.7-fold increase in apoptosis rates compared with control cells following treatment with etoposide. Exposure of colonic cell lines to exogenous recombinant MUC17-CRD1-L-CRD2 protein significantly increased cell migration and inhibited apoptosis. As a marker of biologic activity, MUC17-CRD1-L-CRD2 proteins stimulate ERK phosphorylation in colonic cell lines; and inhibition of ERK phosphorylation reduced the anti-apoptosis and migratory effect of MUC17-CRD1-L-CRD2. Finally, mice treated with MUC17-CRD1-L-CRD2 protein given per rectum demonstrated accelerated healing in acetic acid and dextran sodium sulfate induced colitis in vivo. These data indicate that both native MUC17 and the exogenous recombinant cysteine-rich domain of MUC17 play a role in diverse cellular mechanisms related to cell restitution, and suggest a potential role for MUC17-CRD1-L-CRD2 recombinant protein in the treatment of mucosal inflammatory diseases.  相似文献   

7.
Mucus hypersecretion occurs as a consequence of the Th2 immune response in epithelia, yet it was not previously known whether the degree of O-glycosylation was modulated under such conditions. A colonic carcinoma cell line LS174T was used to assess the effect of interleukin (IL)-4 on the mRNA levels of eight pp-GalNAc-Ts. A three- to four-fold increase in pp-GalNAc-T1, T4, and T7 levels was observed. Lysates of untreated or IL-4-treated cells were examined for their ability to transfer GalNAc residues onto a peptide corresponding to the tandem repeat portion of human MUC2. The number of incorporated GalNAc residues was greater after incubation with lysates of IL-4-treated cells than with lysates of untreated cells. Mucin-like large glycoproteins secreted by IL-4-treated cells had higher binding capacity to PNA and VVA-B4 than those secreted by untreated cells. The results indicated that IL-4-treated LS174T cells are able to produce mucins with a higher degree of O-glycosylation than untreated counterparts.  相似文献   

8.
Colonic mucus barrier is regarded as the first defense line against bacteria and antigens from directly attaching to the epithelium, which would further lead to intestinal inflammation activation and pathological conditions. As MUC2 mucin is the predominant component of the mucus, understanding the regulatory mechanisms of MUC2 is important for mucus barrier protection. Somatostatin (SST) has been found to play a role in colon protection through various manners. However, whether SST involves in colonic mucus barrier regulation is still unclear. The aim of this study is to investigate the effects and potential mechanisms of SST on colonic MUC2 expression and mucus secretion. In vivo study, exogenous somatostatin (octreotide) administration effectively stimulated mice colonic MUC2 expression and mucus secretion. In human goblet-like cell LS174T cells, SST exposure also significantly stimulated MUC2 expression and mucus secretion. Further studies indicated that SST receptor 5 (SSTR5) was significantly activated by SST, whereas specific SSTR5 siRNA transfection of LS174T cells significantly blocked SST-induced increase in MUC2 expression and mucus secretion. In addition, SSTR5 agonist L817,818 also upregulated MUC2 expression and mucus secretion in LS174T cells. Mechanistic studies further demonstrated that SST/SSTR5-mediated MUC2 upregulation was dependent on Notch-Hes1 pathway suppression by detecting notch intracellular domain (NICD) and Hes1 proteins. Taken together, our findings suggested that SST could participate in colonic mucus barrier regulation through SSTR5-Notch-Hes1-MUC2 signaling pathway. These findings provide a deep insight into the role of SST on colonic mucus regulation under physiological conditions.  相似文献   

9.
Molecular cloning of cDNAs derived from a novel human intestinal mucin gene   总被引:24,自引:0,他引:24  
A human small intestinal lambda gt11 cDNA library was screened with antibodies to deglycosylated small intestinal mucin. Four partial cDNA clones were isolated that define a novel human mucin gene. These include two partial cDNA clones, SIB 124 and SIB 139, that contain 51 nucleotide tandem repeats which encode a seventeen amino acid repetitive peptide with a consensus sequence of HSTPSFTSSITTTETTS. SIB 139 hybridized to messages produced by small intestine, colon, colonic tumors and also by high mucin variant LS174T colon cancer cells. The gene from which cDNAs SIB 124 and SIB 139 are derived (proposed name MUC 3) maps to chromosome 7, distinct from other known human mucin genes.  相似文献   

10.
The short fatty acid, butyrate, which is produced by intestinal anaerobic bacteria in the colon, has inhibitory activity on histone deacetylases (HDACs). Treatment of the human colon cancer cell line, LS174T, with 1-2 mM sodium butyrate stimulated MUC2 mucin production, as determined by histological PAS staining of carbohydrate chains of mucin, and confirmed at the protein and mRNA levels by immunoblotting with anti-MUC2 antibody and real-time RT-PCR, respectively. Increases in acetylated histone H3 in the LS174T cells treated with butyrate suggest inhibition of HDACs in these cells. Butyrate-stimulated MUC2 production in the LS174T cells was inhibited by the MEK inhibitor, U0126, implicating the involvement of extracellular signal-regulated kinase (ERK) cascades in this process. Proliferation of the LS174T cells was inhibited by butyrate treatment. Although apoptotic nuclear DNA fragmentation could not be detected, cell-cycle arrest at the G0/G1 phase in the butyrate-treated cells was demonstrated by flow cytometry. Thus butyrate, an HDAC inhibitor, inhibits proliferation of LS174T cells but stimulates MUC2 production in individual cells.  相似文献   

11.
Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.  相似文献   

12.
The mucus layer coating the gastrointestinal tract serves as the first line of intestinal defense against infection and injury. Probiotics promote mucin production by goblet cells in the intestine. p40, a Lactobacillus rhamnosus GG-derived soluble protein, has been shown to transactivate the EGF receptor (EGFR) in intestinal epithelial cells, which is required for inhibition of apoptosis and preservation of barrier function in the colon, thereby ameliorating intestinal injury and colitis. Because activation of EGFR has been shown to up-regulate mucin production in goblet cells, the purpose of this study was to investigate the effects and mechanisms of p40 regulation of mucin production. p40 activated EGFR and its downstream target, Akt, in a concentration-dependent manner in LS174T cells. p40 stimulated Muc2 gene expression and mucin production in LS174T cells, which were abolished by inhibition of EGFR kinase activity, down-regulation of EGFR expression by EGFR siRNA transfection, or suppression of Akt activation. Treatment with p40 increased mucin production in the colonic epithelium, thus thickening the mucus layer in the colon of wild type, but not of Egfrwa5 mice, which have a dominant negative mutation in the EGFR kinase domain. Furthermore, inhibition of mucin-type O-linked glycosylation suppressed the effect of p40 on increasing mucin production and protecting intestinal epithelial cells from TNF-induced apoptosis in colon organ culture. Thus, these results suggest that p40-stimulated activation of EGFR mediates up-regulation of mucin production, which may contribute to the mechanisms by which p40 protects the intestinal epithelium from injury.  相似文献   

13.
Bu X  Li L  Li N  Tian X  Huang P 《Cell biology international》2011,35(11):1121-1129
Altered expression of MUC2 (mucin 2) is related to tumour development in colorectal cancer. Colorectal mucinous carcinomas are positive for MUC2 expression, whereas MUC2 is down-regulated in non-mucinous adenocarcinomas. In the present study, we down-regulated MUC2 expression by RNAi (RNA interference) and investigated the in vitro and in vivo effects on the proliferation and invasion/migration potential of the LS174T human colorectal cancer cells. The LS174T cell line is a goblet-cell-like colorectal cancer cell line that continuously produces high levels of MUC2. Inhibition of MUC2 expression in vitro by transfection of LS174T cells with the recombinant plasmid pcDNA6.2-GW/EmGFP-miR-MUC2 led to the production of a stably transfected MUC2-RNAi LS174T cell line. The proliferation and invasion/migration of MUC2-RNAi cells in vitro were significantly higher than those in control cells, as assessed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], colony formation and transwell assays. Subcutaneous injection of MUC2-RNAi LS174T cells into nude mice resulted in the development of subcutaneous tumours visible to the naked eye after 1 week. The growth rate of tumours derived from MUC2-RNAi LS174T cells was greater than that of tumours derived from control cells. Ki67 and matrix metalloproteinase-9 proteins were detected by immunohistochemistry in the xenografts. The expression levels of these proteins were higher in the MUC2-RNAi-derived xenografts than in xenografts derived from control cells. Although the role of MUC2 in colorectal tumorigenesis is not fully understood, these results strongly suggest a relationship between the proliferation and invasion of LS174T cells and the expression of MUC2.  相似文献   

14.

Background

The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis.

Methods

The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence.

Results

The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucinShigella dysenteriae into HT-29 cells occurs within 2 hours. Interestingly, in Shigella dysenteriae infected conditions, significant increases in mRNA expression of MUC2 and IL-1β were observed in a time dependent manner. Further, immunofluorescence analysis of MUC2 shows more positive cells in Shigella dysenteriae treated cells than untreated cells.

Conclusions

Our study concludes that the Shigella species specifically binds to guinea pig colonic mucin, but not to guinea pig small intestinal mucin. The guinea pig colonic mucin showed a greater binding parameter (R), and more saturable binding, suggesting the presence of a finite number of receptor binding sites in the colonic mucin of the host. In addition, modification of mucins with TFMS and sodium metaperiodate significantly reduced mucin-bacterial binding; suggesting that the mucin-Shigella interaction occurs through carbohydrate epitopes on the mucin backbones. Overproduction of MUC2 may alter adherence and invasion of Shigella dysenteriae into human colonic epithelial cells.  相似文献   

15.
Mucins are synthesized and secreted by many epithelia. They are complex glycoproteins that offer cytoprotection. In their functional configuration, mucins form oligomers by a biosynthetic process that is poorly understood. A family of four human gastrointestinal mucin genes (MUC2, MUC5AC, MUC5B, and MUC6) is clustered to chromosome 11p15.5. To study oligomerization of these related mucins, we performed metabolic labeling experiments with [35S]amino acids in LS174T cells, and isolated mucin precursors by specific immunoprecipitations that were analyzed on SDS-PAGE. Each of the precursors of MUC2, MUC5AC, MUC5B, and MUC6 formed a single species of disulfide-linked homo-oligomer within 1 h after pulse labeling. Based on apparent molecular masses, these oligomeric precursors were most likely dimers. Inhibition of vesicular RER-to-Golgi transport, with brefeldin A and CCCP, did not affect the dimerization of MUC2 precursors, localizing dimerization to the RER. O-Glycosylation of MUC2 followed dimerization. Inhibition of N- glycosylation by tunicamycin retarded, but did not inhibit, dimerization, indicating that N-glycans play a role in efficient dimerization of MUC2 precursors. Based on sequence homology, the ability of MUC2, MUC5AC, MUC5B and MUC6 to dimerize most likely resides in their C-terminal domains. Thus, the RER-localized dimerization of secretory mucins likely proceeds by similar mechanisms, which is an essential step in the formation of the human gastrointestinal mucus- gels.   相似文献   

16.
We recently reported that bile salts play a role in the regulation of mucin secretion by cultured dog gallbladder epithelial cells. In this study we have examined whether bile salts also influence mucin secretion by the human epithelial colon cell line LS174T. Solutions of bile salts were applied to monolayers of LS174T cells. Mucin secretion was quantified by measuring the secretion of [3H]GlcNAc labeled glycoproteins. Both unconjugated bile salts as well as taurine conjugated bile salts stimulated mucin secretion by the colon cells in a dose-dependent fashion. Hydrophobic bile salts were more potent stimulators than hydrophilic bile salts. Free (unconjugated) bile salts were more stimulatory compared with their taurine conjugated counterparts. Stimulation of mucin secretion by LS174T cells was found to occur at much lower bile salt concentrations than in the experiments with the dog gallbladder epithelial cells. The protein kinase C activators PMA and PDB had no stimulatory effect on mucin secretion. We conclude that mucin secretion by the human colon epithelial cell line LS174T is regulated by bile salts. We suggest that regulation of mucin secretion by bile salts might be a common mechanism, by which different epithelia protect themselves against the detergent action of bile salts, to which they are exposed throughout the gastrointestinal tract.   相似文献   

17.
Four of the genes that encode gel-forming mucins, which are major components of the mucus layer protecting many epithelial surfaces, are clustered at chromosome 11p15.5 and show both cell- and tissue-specific expression patterns. We aimed to determine whether the individual genes were coordinately regulated by mechanisms involving higher order chromatin structure. CCCTC-binding factor (CTCF) sites were predicted in silico and CTCF occupancy then evaluated by chromatin immunoprecipitation. CTCF was found at many sites across the gene cluster, and its binding was correlated with mucin gene expression. Next, siRNA-mediated depletion of CTCF was shown to increase MUC2 expression in A549 lung carcinoma cells and both MUC6 and MUC5AC expression in LS180 colon carcinoma cells. These changes correlated with loss of CTCF binding at multiple sites, although others retained occupancy. In cells actively expressing the mucins, the gene cluster was shown by chromosome conformation capture to form looped three-dimensional structures with direct interactions between the MUC2 promoter region, regions 30 kb 5′ to it, close to the MUC6 promoter and others near the 3′ end of MUC5AC, >170 kb away. Finally, to demonstrate the importance of CTCF binding to mucin gene expression, Calu-3 lung carcinoma cells were exposed to lipopolysaccharide (LPS). LPS increased the expression of MUC2 and MUC5AC and reduced MUC5B. CTCF occupancy was concurrently depleted at specific binding sites close to these genes. These data suggest that CTCF binding and cell type-specific long-range interactions across the 11p15.5 gene cluster are critical mechanisms for coordinating gel-forming mucin gene expression.  相似文献   

18.

Background

Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.

Methodology/Principal Findings

Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.

Conclusion

Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.  相似文献   

19.
Intestinal epithelial cells (IECs) regulate the absorption and secretion of anions, such as HCO3- or Cl-. Bestrophin genes represent a newly identified group of calcium-activated Cl- channels (CaCCs). Studies have suggested that, among the four human bestrophin-family genes, bestrophin-2 (BEST2) and bestrophin-4 (BEST4) might be expressed within the intestinal tissue. Consistently, a study showed that BEST2 is expressed by human colonic goblet cells. However, their precise expression pattern along the gastrointestinal tract, or the lineage specificity of the cells expressing these genes, remains largely unknown. Here, we show that BEST2 and BEST4 are expressed in vivo, each in a distinct, lineage-specific manner, in human IECs. While BEST2 was expressed exclusively in colonic goblet cells, BEST4 was expressed in the absorptive cells of both the small intestine and the colon. In addition, we found that BEST2 expression is significantly down-regulated in the active lesions of ulcerative colitis, where goblet cells were depleted, suggesting that BEST2 expression is restricted to goblet cells under both normal and pathologic conditions. Consistently, the induction of goblet cell differentiation by a Notch inhibitor, LY411575, significantly up-regulated the expression of not BEST4 but BEST2 in MUC2-positive HT-29 cells. Conversely, the induction of absorptive cell differentiation up-regulated the expression of BEST4 in villin-positive Caco-2 cells. In addition, we found that the up- or down-regulation of Notch activity leads to the preferential expression of either BEST4 or BEST2, respectively, in LS174T cells. These results collectively confirmed that BEST2 and BEST4 could be added to the lineage-specific genes of humans IECs due to their abilities to clearly identify goblet cells of colonic origin and a distinct subset of absorptive cells, respectively.  相似文献   

20.
The membrane-bound mucin MUC17 (mouse homolog Muc3) is highly expressed on the apical surface of intestinal epithelia and is thought to play a role in epithelial restitution and protection. Therefore, we hypothesized that MUC17 has a role in protection of the intestinal mucosa against luminal pathogens. Human intestinal cell lines were transfected by electroporation (Caco-2 and HT 29/19A) and by retroviral expression vector (LS174T, a cell line with high levels of MUC17 expression) using MUC17 siRNA. Transepithelial electrical resistance, permeability, tight-junction protein expression, adhesion, and invasion in response to enteroinvasive Escherichia coli (EIEC) were measured in all cell lines. In some experiments, the effect of the addition of exogenous purified crude mucin or recombinant Muc3 cysteine-rich domain protein (Muc3 CRD1-L-CRD2) as preventative or protective treatment was tested. Reduction of endogenous MUC17 is associated with increased permeability, inducible nitric oxide synthase and cyclooxygenase 2 induction, and enhanced bacterial invasion in response to EIEC exposure. Bacterial adhesion is not affected. Exogenous mucin (Muc3) and recombinant Muc3CRD treatment had a small but significant effect in attenuating the effects of EIEC infection. In conclusion, these data suggest that both native and exogenous MUC17 play a role in attachment and invasion of EIEC in colonic cell lines and in maintaining epithelial barrier function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号