首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As with most clonal organisms, hydractiniid hydroids display a range of morphological variation from sheet-like to runner-like forms. Life history differences correlate with these morphological traits, exhibiting patterns commonly found in studies of heterochrony. Experimental studies of two hydractiniid species show that both morphological and life history heterochronies correlate with patterns of gastrovascular circulation. Similar experimental perturbations of energy metabolism, however, have opposite heterochronic effects on the two species. Treatment with 2,4-dinitrophenol, an uncoupler of oxidative phosphorylation, produced diminished peripheral circulation and sheet-like peramorphic morphologies in the runner-like species, Podocoryne carnea. In contrast, similar manipulations of the sheet-like species, Hydractinia symbiolongicarpus, produced variable peripheral circulation and more runner-like, juvenilized morphologies. These results diverge at the level of morphological and life history pattern, but are consistent when viewed in terms of the physiology of the gastrovascular system. Interpretations of patterns of heterochrony must focus on the physiological and developmental mechanisms which mediate the expression of heterochronic traits.  相似文献   

2.
The high diversity of spatial organization of shoots in colonies of thecate hydroids (Cnidaria, Hydroidomedusa, Leptomedusae) is determined by their modular organization, which is characterized by the cyclic morphogenesis in the colony. It is attempted to show that evolutionary and ontogenetic changes in the spatial organization of hydroids of this group are based on the allometric growth of modules of colony shoots. An increase in size of a developing module provides prerequisites for earlier initiation of the growing tips of succeeding moduls (heterochrony). In some cases, heterochronies determined transition from cyclic to acyclic morphogenesis. The earlier emergence of new growing tips allowed integration of several primary modules into secondary modules, resulting among other things in changes in relative positions of primary modules (heterotopy). In complex colonies, these changes are traced in the ontogeny of a single colony.  相似文献   

3.
Redox control and the evolution of multicellularity   总被引:1,自引:0,他引:1  
Redox chemistry, involving the transfer of electrons and hydrogen atoms, is central to energy conversion in respiration; in addition, control of gene expression by redox state commonly occurs in bacteria, allowing a rapid response to environmental changes, such as altered food supply. Colonial metazoans often encrust surfaces over which the food supply varies in time or space; hence, in these organisms redox control of the development of feeding structures and gastrovascular connections could be similarly adaptive, allowing colonies to adjust the timing of development and spacing of structures in response to a variable food supply and other environmental factors. Experimental perturbations of redox state in colonial hydroids support this notion of adaptive redox control, and redox signaling in metazoans may have evolved in this ecological context. At the same time, redox signaling has important consequences for the evolutionary transition from unicellular to multicellular organisms. Unlike protein or peptide signaling, redox signaling acting in concert with programmed cell death may automatically inflict a cost on those cells that "defect," that is, selfishly favor their own replication rate over that of the multicellular group. In this way, redox signaling may have allowed multicellular individuality to evolve and more easily be maintained.  相似文献   

4.
There is currently tremendous interest in how the physiology of individual animals changes and develops during ontogeny. One of the key areas is the extent to which the timing and/or rate of physiological development is fixed within an individual and to what extent can it be altered. We propose that plasticity in the timing of the onset of a particular physiological regulatory system during an individuals development be referred to as physiological heterokairy (to clearly distinguish this phenomenon from physiological heterochrony, which is an evolutionary pattern), and we marshal evidence for three different patterns of heterokairy: 1. altering relative position in the physiological itinerary; 2. altering overall rate of development per se and; 3. a combination of 1 and 2. Using these patterns as a starting point, we develop a framework for investigating physiological heterokairy which takes cognizance of the facts that multiple components of each regulatory system could appear at different times and multiple regulatory systems could come 'on-line' at different times. We finish by placing physiological heterokairy in the wider context of its ecological and evolutionary implications and its relationship to physiological genomics and heterochrony.  相似文献   

5.
Evolutionary changes in developmental timing and rates (heterochrony) are a source of morphological variation. Here we explore a central issue in heterochronic analysis: are the alterations in developmental timing and rates the only factor underlying morphological heterochrony? Tarsometatarsal growth through endochondral ossification in Ardeidae evolution has been taken as a case study. Evolutionary changes in bone growth rate (morphological heterochrony) might be either (a) the result of alterations in the mitotic frequency of epiphyseal chondrocytes (process‐heterochrony hypothesis), or (b) the outcome of alterations in the number of proliferating cells or in the size of hypertrophic chondrocytes (structural hypothesis). No correlation was found between tarsometatarsal growth rates and the frequency of cell division. However, bone growth rates were significantly correlated with the number of proliferating cells. These results support the structural hypothesis: morphological acceleration and deceleration are the outcome of evolutionary changes in one structural variable, the number of proliferating cells.  相似文献   

6.
In this work allometry and heterochrony are integrated in an analysis of ontogenic and interspecific morphological patterns in the African apes. The relationship between the interspecific differences in adult morphology and the differences in underlying patterns of growth allometries, body weight growth rates, and developmental chronologies is investigated. Results indicate that rate hypermorphosis, or the extension of ancestral allometries into new size/shape ranges with no increase in the duration of ontogeny, underlies many of the interspecific differences in form among the African apes. In addition, the need for further clarification of the processes of heterochrony is stressed by distinguishing between rate and timing differences. These distinctions and processes are illustrated and discussed using the morphological data on the African apes.  相似文献   

7.
Heterochrony and allometry: the analysis of evolutionary change in ontogeny   总被引:6,自引:0,他引:6  
The connection between development and evolution has become the focus of an increasing amount of research in recent years, and heterochrony has long been a key concept in this relation. Heterochrony is defined as evolutionary change in rates and timing of developmental processes; the dimension of time is therefore an essential part in studies of heterochrony. Over the past two decades, evolutionary biologists have used several methodological frameworks to analyse heterochrony, which differ substantially in the way they characterize evolutionary changes in ontogenies and in the resulting classification, although they mostly use the same terms. This review examines how these methods compare ancestral and descendant ontogenies, emphasizing their differences and the potential for contradictory results from analyses using different frameworks. One of the two principal methods uses a clock as a graphical display for comparisons of size, shape and age at a particular ontogenic stage, whereas the other characterizes a developmental process by its time of onset, rate, and time of cessation. The literature on human heterochrony provides particularly clear examples of how these differences produce apparent contradictions when applied to the same problem. Developmental biologists recently have extended the concept of heterochrony to the earliest stages of development and have applied it at the cellular and molecular scale. This extension brought considerations of developmental mechanisms and genetics into the study of heterochrony, which previously was based primarily on phenomenological characterizations of morphological change in ontogeny. Allometry is the pattern of covariation among several morphological traits or between measures of size and shape; unlike heterochrony, allometry does not deal with time explicitly. Two main approaches to the study of allometry are distinguished, which differ in the way they characterize organismal form. One approach defines shape as proportions among measurements, based on considerations of geometric similarity, whereas the other focuses on the covariation among measurements in ontogeny and evolution. Both are related conceptually and through the use of similar algebra. In addition, there are close connections between heterochrony and changes in allometric growth trajectories, although there is no one-to-one correspondence. These relationships and outline links between different analytical frameworks are discussed.  相似文献   

8.
Data documenting skeletal development in rodents, the most species-rich ‘order’ of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodents.  相似文献   

9.
Redox signaling has emerged as a unifying theme in many seemingly disparate disciplines. Such signaling has been widely studied in bacteria and eukaryotic organelles and is often mediated by reactive oxygen species (ROS). In this context, reduced glutathione (GSH) acts as an important intracellular antioxidant, diminishing ROS and potentially affecting redox signaling. Complementing this cell-level perspective, colonial hydroids can be a useful model for understanding organism-level redox signaling. These simple, early-evolving animals consist of feeding polyps connected by tubelike stolons. Colonies treated exogenously with GSH or reduced glutathione ethyl ester (GEE) were expected to show a morphological change to sheetlike growth typical of low levels of ROS. Contrary to expectations, diminished stolon branching and polyp initiation was observed. Such runnerlike growth is associated with higher levels of ROS, and surprisingly, such higher levels were found in GSH- and GEE-treated colonies. Further investigations show that GSH triggered a feeding response in hydroid polyps, increasing oxygen uptake but at the same time relaxing mitochondrion-rich contractile regions at the base of polyps. Diminished gastrovascular flow and increased emissions of mitochondrial ROS also correlated with the observed runnerlike growth. In contrast to cell-level, "bottom-up" views of redox signaling, here the phenotype may arise from a "top-down" interaction of mitochondrion-rich regions and organism-level physiology. Such multicellular redox regulation may commonly occur in other animals as well.  相似文献   

10.
The concept of heterochrony, that the relative timing of ontogenetic events can shift during evolution, has been a major paradigm for understanding the role of developmental processes in evolution. In this paper we consider heterochrony from the perspective of developmental biology. Our objective is to redefine heterochrony more broadly so that the concept becomes readily applicable to the evolution of the full range of ontogenetic processes, from embryogenesis through the adult. Throughout, we stress the importance of considering heterochrony from a hierarchical perspective. Thus, we recognize that a heterochronic change at one level of organization may be the result of non-heterochronic events at an underlying level. As such, heterochrony must be studied using a combination of genetic, molecular, cellular, and morphological approaches.  相似文献   

11.
Heterochrony revisited: the evolution of developmental sequences   总被引:7,自引:1,他引:6  
The concept of heterochrony is a persistent component of discussions about the way that evolution and development interact. Since the late 1970s heterochrony has been defined largely as developmental changes in the relationship of size and shape. This approach to heterochrony, here termed growth heterochrony, is limited in the way it can analyse change in the relative timing of developmental events in a number of respects. In particular, analytical techniques do not readily allow the study of changes in developmental events not characterized by size and shape parameters, or of many kinds of events in many taxa. I discuss here an alternative approach to heterochrony, termed sequence heterochrony, in which a developmental trajectory is conceptualized as a series of discrete events. Heterochrony is demonstrated when the sequence position of an event changes relative to other events in that sequence. I summarize several analytical techniques that allow the investigation of sequence heterochrony in phylogenetic contexts and also quantitatively. Finally, several examples of how this approach may be used to test hypotheses on the way development evolves are summarized.  相似文献   

12.
Clinal geographic variation across an onshore-to-offshore environmental gradient occurs in the Lower Permian trepostome bryozoan Tabulipora carbonaria collected from three widespread calcareous shales of the Wreford Megacyclothem of Kansas. Separate multivariate statistical tests dclineate significant differences between populations within each shale unit, and between onshore, intermediate, and offshore populations pooled across all three shales, suggesting that even weakly-developed gradients may initiate different intraspecific morphological responses. Growth trajectories for populations along the cline also differ significantly, indicating astogenetic (developmental) heterochrony. Populations from onshore habitats are generally paedomorphic relative to those in more offshore settings, and exhibit pre- and postdisplacement and hypermorphosis in zooecial and acanthostyle characteristics. These heterochronic processes may have increased colonial reproductive potential and the efficiency of water flow for feeding and waste disposal in colonies from onshore habitats. Variation from tightly constrained development (astogenetic plasticity) decreased monotonically in an onshore-to-offshore direction; canalized growth may characterize colonies from more stable offshore habitats, whereas greater flexibility during the growth of colonies from unstable onshore biotopes may have increased their rate of survival. Populations of colonies from stratigraphically successive calcareous shales of the Wreford display patterns of growth that are nearly identical to those found in an offshore-to-onshore direction along the cline. Both clinal and temporal patterns probably resulted from selection for more paedomorphic morphologies in onshore, perhaps unstable, habitats and represent microevolution in T. carbonaria. These local adjustments to environmental conditions may produce variation that affects the rate of macroevolutionary change. □Bryozoa, clines, heterochrony, microevolution, Permian, variability.  相似文献   

13.
Many sessile colonial organisms intensively compete with conspecifics for growing space. This competition can result in either cooperative fusion or aggressive rejection between colonies, and some species have evolved highly polymorphic genetic systems that mediate the outcome of these interactions. Here we demonstrate the potential for interactions among close kin as the basis for the evolutionary maintenance of a genetically polymorphic allorecognition system in the colonial hydroid Hydractinia symbiolongicarpus, which lives on gastropod shells occupied by hermit crabs. Fusion between hydroids in the laboratory is restricted mainly to encounters between full siblings, whereas other encounters result in aggressive rejection. Natural selection acting on the costs or benefits of fusion between colonies could be responsible for the present maintenance of such a highly specific behavioral response, but only if encounters between fusible colonies still occur in contemporary populations. The large size of these hydroid populations and the mobility of the crabs should limit the potential for interactions among closely related hydroids on the same shell. However, RAPD polymorphisms among a large sample of hydroids from a population off the coast of Massachusetts indicate that genetically similar colonies are often found together on the same shell. Some genetic distances between colonies on the same shell were low relative to genetic distances between colonies on different shells or genetic distances between known full siblings from laboratory matings. We conservatively estimate that 2–18% of co-occurring colonies may be full sibling pairs. These observations suggest that encounters between genetically similar hydroids are common, despite the mobile nature of their habitat, and these encounters may provide frequent opportunities for natural selection to influence the evolution of cooperative and agonistic behaviors and their polymorphic genetic basis.  相似文献   

14.
The ontogeny of an organism is a complex process that strongly depends on the timing of developmental processes. In this article, I discuss ontogeny of fish (and other organisms) in temporal terms, based on the hypothesis that organisms as self-organized entities may create their own times for their development, and that this development consists of a sequence of longer stabilized states (steps) with shorter, intermittent less-stable intervals (thresholds). If viewed within the context of structure-to-structure, organ-to-organ and/or organism-to-environment relationships, then the saltatory pattern of ontogeny emerges at each transition from one stabilized state to another. I consider two timing mechanisms essential to ontogeny - synchrony (coordinating) and heterochrony (implementing); their possible roles are discussed. Besides this, a new context and understanding for the term heterochrony is proposed. At least three levels of heterochrony should be distinguished: interspecific, intraspecific and intraindividual. However, the difference among these three types of heterochrony is not in the phenomenon itself but in the way we perceive and classify it.  相似文献   

15.
Mitochondria have the capacity to integrate environmental signals and, in animals with active stem cell populations, trigger responses in terms of growth and growth form. Colonial hydroids, which consists of feeding polyps connected by tube-like stolons, were treated with avicis, triterpenoid electrophiles whose anti-cancer properties in human cells are mediated in part by mitochondria. In treated hydroids, both oxygen uptake and mitochondrial reactive oxygen species were diminished relative to controls, similar to that observed in human cells exposed to avicins. While untreated colonies exhibit more stolon branches and connections in the centre of the colony than at the periphery, treated colonies exhibit the opposite: fewer stolon branches in the centre of the colony than at the periphery. The resulting growth form suggest an inversion of the normal pattern of colony development mediated by mitochondrial and redox-related perturbations. An as-yet-uncharacterized gradient within the colony may determine the ultimate phenotypic effects of avicin perturbation.  相似文献   

16.
Understanding the link between ontogeny (development) and phylogeny (evolution) remains a key aim of biology. Heterochrony, the altered timing of developmental events between ancestors and descendants, could be such a link although the processes responsible for producing heterochrony, widely viewed as an interspecific phenomenon, are still unclear. However, intraspecific variation in developmental event timing, if heritable, could provide the raw material from which heterochronies originate. To date, however, heritable developmental event timing has not been demonstrated, although recent work did suggest a genetic basis for intraspecific differences in event timing in the embryonic development of the pond snail, Radix balthica. Consequently, here we used high-resolution (temporal and spatial) imaging of the entire embryonic development of R. balthica to perform a parent–offspring comparison of the timing of twelve, physiological and morphological developmental events. Between-parent differences in the timing of all events were good predictors of such timing differences between their offspring, and heritability was demonstrated for two of these events (foot attachment and crawling). Such heritable intraspecific variation in developmental event timing could be the raw material for speciation events, providing a fundamental link between ontogeny and phylogeny, via heterochrony.  相似文献   

17.
Heterochrony produces morphological change with effects in shape, size, and/or timing of developmental events of a trait related to an ancestral ontogeny. This paper analyzes heterochrony during the ontogeny of Ceratophryinae (Ceratophrys, Chacophrys, and Lepidobatrachus), a monophyletic group of South American frogs with larval development, and uses different approaches to explore their morphological evolution: (1) inferences of ancestral ontogenies and heterochronic variation from a cladistic analysis based on 102 morphological larval and adult characters recorded in ten anuran taxa; (2) comparisons of size, morphological variation, and timing (age) of developmental events based on a study of ontogenetic series of ceratophryines, Telmatobius atacamensis, and Pseudis platensis. We found Chacophrys as the basal taxon. Ceratophrys and Lepidobatrachus share most derived larval features resulting from heterochrony. Ceratophryines share high rates of larval development, but differ in rates of postmetamorphic growth. The ontogeny of Lepidobatrachus exhibits peramorphic traits produced by the early onset of metamorphic transformations that are integrated in an unusual larval morphology. This study represents an integrative examination of shape, size, and age variation, and discusses evolutionary patterns of metamorphosis. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 752–780.  相似文献   

18.
Abstract. We compared growth rates and final morphological states of the athecate colonial hydroid Podocoryna carnea in two nutritional environments: one varying the quantity of food provided at a fixed interval and the second varying the time between feedings of a fixed quantity. In both environments, replicate colonies were either fed uniformly, or fed on only one side and starved on the other. In addition, we fed colonies fluorescence-labeled cultures of Artemia salina and documented the subsequent distribution of label. We found that both the growth rates and the final morphological state varied logarithmically with food supply. Heterogeneous feeding had a marked effect on colony morphology, with a sharp boundary in polyp number, stolon density, and polyp size forming at the fed–unfed interface. The distribution of fluorescence was correlated with sites of colony growth. These results confirm and extend early work on the priority of growth zones in colonial hydroids, and present new challenges for understanding the relationship among energy metabolism, gastrovascular circulation, and colony form.  相似文献   

19.
The evolution of plant morphology is the result of changes in developmental processes. Heterochrony, the evolutionary change in developmental rate or timing, is a major cause of ontogenetic modification during evolution. It is responsible for both interspecific and intraspecific morphological differences. Other causes include heterotopy, the change of structural position, and homeosis, the replacement of a structure by another. This paper discusses and reviews the role of heterochrony in plant evolution at the organismal, organ, tissue, cellular, and molecular levels, as well as the relationships among heterochrony, heterotopy, and homeosis. An attempt has been made to include all published studies through late 1999. It is likely that most heterochronic change involves more than one of the six classic pure heterochronic processes. Of these processes, we found neoteny (decreased developmental rate in descendant), progenesis (earlier offset), and acceleration (increased rate) to be more commonly reported than hypermorphosis (delayed offset) or predisplacement (earlier onset). We found no reports of postdisplacement (delayed onset). Therefore, although rate changes are common (both neoteny and acceleration), shifts in timing most commonly involve earlier termination in the descendant (progenesis). These relative frequencies may change as more kinds of structures are analyzed. Phenotypic effects of evolutionary changes in onset or offset timing can be exaggerated, suppressed, or reversed by changes in rate. Because not all developmental changes responsible for evolution result from heterochrony, however, we propose that plant evolution be studied from a viewpoint that integrates these different developmental mechanisms.  相似文献   

20.
It is postulated widely that changes in developmental timing (i.e., heterochrony) represent a major mechanism of evolutionary change. However, it is only with recent methodological advances that changes in the order in which development proceeds (sequence heterochrony) can be identified and quantified. We apply these techniques to examine whether heterochrony in the early embryonic (organogenetic) period has played an important role in the diversification of mammals. Although we find clear instances of sequence heterochrony in mammals, particularly between eutherians and marsupials, the majority of mammalian lineages that we could examine (those within the major clades Euarchontoglires and Laurasiatheria) show few or no heterochronic changes in the 116 events examined (e.g., Artiodactyla, Euarchonta, Fereuungulata, Glires, Primates, Rodentia). This is in contrast with the timing shifts reported between and within other tetrapod clades. Our results suggest that sequence heterochrony in embryonic stages has not been a major feature of mammalian evolution. This might be because mammals, and perhaps amniotes in general, develop for an extended time in a protected environment, which could shield the embryos from strong diversifying selection. Our results are also consistent with the view that mammal embryos are subject to special developmental constraints. Therefore, other mechanisms explaining the diversity of extant mammals must be sought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号