首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study quantified microhabitat use, morphology, performance (sprinting, climbing, clinging, and jumping), and escape behaviour of two closely related tropical rock-using lizards. Specifically, the study tested whether: (1) a flatter body and longer limbs enhance performance in rocky habitats; (2) escape behaviour supports predictions based on habitat openness; and (3) there is a trade-off between sprinting and climbing performance. Despite the occupation of generally similar rocky habitats, the habitat of Carlia scirtetis was more open and composed of larger boulders with more regular surfaces, whereas the habitat of Carlia mundivensis was composed of more undergrowth and leaf litter, consisting of smaller boulders with irregular surfaces. The longer legs, flatter body, and greater sprinting and climbing ability of C. scirtetis, supports ecomorphological predictions. By contrast to predictions based on habitat openness, C. scirtetis allowed a potential threat to approach closer and ran further to a refuge than C. mundivensis , suggesting that escape behaviour as determined by performance may be species-specific or decoupled in these two species. The increased sprint speed of C. scirtetis highlighted a performance trade-off, with climbing speed lagging behind that of sprint speed. These results suggest that subtle differences in the structural microhabitat and the degree of habitat openness may ultimately result in substantial differences in morphology, performance, and threat behaviour in closely-related lizard species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 85–98.  相似文献   

2.
The purpose of this study was to characterize sprint patterns of rugby union players during competition. Velocity profiles (60 m) of 28 rugby players were initially established in testing from standing, walking, jogging, and striding starts. During competition, the individual sprinting patterns of 17 rugby players were determined from video by using the individual velocity profiles. Forwards commenced sprints from a standing start most frequently (41%), whereas backs sprinted from standing (29%), walking (29%), jogging (29%), and occasionally striding (13%) starts. Forwards and backs achieved speeds in excess of 90% maximal velocity (Vmax) on 5 +/- 4 and 9 +/- 4 occasions ( approximately 50% of the sprints performed), respectively, during competition. The higher frequency of sprinting for the backs compared with the forwards highlights the importance of speed training for this positional group. The similar relative distribution of velocities achieved during competition for forwards and backs suggests both positional groups should train acceleration and Vmax qualities. The backs should have a higher total volume of sprint training. Sprinting efforts should be performed from a variety of starting speeds to mimic the movement patterns of competition.  相似文献   

3.
I tested biomechanical predictions that morphological proportions (snout–vent length, forelimb length, hindlimb length, tail length, and mass) and maximal sprinting and jumping ability have evolved concordantly among 15 species of Anolis lizards from Jamaica and Puerto Rico. Based on a phylogenetic hypothesis for these species, the ancestor reconstruction and contrast approaches were used to test hypotheses that variables coevolved. Evolutionary change in all morphological and performance variables scales positively with evolution of body size (represented by snout–vent length); size evolution accounts for greater than 50% of the variance in sprinting and jumping evolution. With the effect of the evolution of body size removed, increases in hindlimb length are associated with increases in sprinting and jumping capability. When further variables are removed, evolution in forelimb and tail length exhibits a negative relationship with evolution of both performance measures. The success of the biomechanical predictions indicates that the assumption that evolution in other variables (e.g., muscle mass and composition) did not affect performance evolution is probably correct; evolution of the morphological variables accounts for approximately 80% of the evolutionary change in performance ability. In this case, however, such assumptions are clade-specific; extrapolation to taxa outside the clade is thus unwarranted. The results have implications concerning ecomorphological evolution. The observed relationship between forelimb and tail length and ecology probably is a spurious result of the correlation between these variables and hindlimb length. Further, because the evolution of jumping and sprinting ability are closely linked, the ability to adapt to certain microhabitats may be limited.  相似文献   

4.
Despite being addressed in a number of previous studies, the controversy regarding the generality vs. specificity of jumping, sprinting, and change-of-direction speed (CODS) abilities still remains unresolved. Here, we tested the hypotheses that jumping, sprinting, and CODS represent separate and specific motor abilities, and that the jumping ability based on concentric and slow stretch-shortening cycle (SSC) is relatively independent of the same ability based on fast SSC. Eighty-seven male college athletes performed 3 concentric/slow SSC and 3 fast SSC jump tests, 4 sprint tests, and 3 CODS tests. The hypotheses were tested by means of the principal component factor analysis (PCA). The applied procedure reduced the greater number of manifest variables to a smaller number of independent latent dimensions or factors and, thereafter, assessed the relationships among them. The PCA revealed a relatively simple and consistent structure consisting of 4 separate factors that explained nearly 80% of variance of the applied tests. The factors appeared to correspond to the sprinting ability, concentric/slow SSC jumping ability, fast SSC jumping ability, and CODS ability. Further analyses revealed that the extracted factors were mainly independent, because they shared only between 6 and 23% of the common variance. These results supported our hypotheses regarding the specificity of jumping, sprinting, and CODS abilities, and specificity of the concentric/slow SSC and fast SSC jumping abilities. Coaches and strength and conditioning professionals should, therefore, use separate performance tests for the assessment of the studied abilities.  相似文献   

5.
The integration or coadaptation of morphological, physiological, and behavioral traits is represented by whole-organism performance traits such as locomotion or bite force. Additionally, maximum sprint speed is a good indicator of whole-organism performance capacity as variation in sprinting ability can affect survival. We studied thermal biology, morphology, and locomotor performance in a clade of Liolaemus lizards that occurs in the Patagonian steppe and plateaus, a type of habitat characterized by its harsh cold climate. Liolaemus of the lineomaculatus section display a complex mixture of conservative and flexible traits. The phylogenetically informed analyses of these ten Liolaemus species show little coevolution of their thermal traits (only preferred and optimum temperatures were correlated). With regard to performance, maximum speed was positively correlated with optimum temperature. Body size and morphology influenced locomotor performance. Hindlimbs are key for maximal speed, but forelimb length was a better predictor for sustained speed (i.e. average speed over a total distance of 1.2?m). Finally, sustained speed differed among species with different diets, with herbivores running on average faster over a long distance than omnivores.  相似文献   

6.
Differences between sexes in physiological performance have received little attention in animals. We tested for sex differences in maximum sprint speed and maximal exertion over a range of temperatures in a population of Platysaurus intermedius wilhelmi lizards. We also examined sex-based differences in selected temperature range, mean field body temperatures (T(b)), and thermal activity limits. Finally, we conducted field studies to quantify male and female responses to a potential predator, which may be affected by their respective performance capabilities. Males were faster than females at all temperatures, and body size had no significant effect on sprint speeds. Males and females also selected similar T(b)'s when placed in a thermal gradient, but in the field, male lizards' T(b)'s were different from those of the females. However, predicted sprint speeds for males and females at their field T(b)'s are similar. No significant differences were found between males and females with regard to maximal exertion. When approached in the field, adult male lizards took refuge significantly earlier than did adult females and also fled over shorter distances, suggesting that females rely on crypsis as an escape strategy.  相似文献   

7.
Organismal performance abilities occupy a central position in phenotypic evolution; they are determined by suites of interacting lower-level traits (e.g., morphology and physiology) and they are a primary focus of natural selection. The mechanisms by which higher levels of organismal performance are achieved during evolution are therefore fundamentally important for understanding correlated evolution in general and coadaptation in particular. Here we address correlated evolution of morphological, physiological, and behavioral characteristics that influence interspecific variation in sprint speed in a clade of lacertid lizards. Phylogenetic analyses using independent contrasts indicate that the evolution of high maximum sprinting abilities (measured on a photocell-timed racetrack) has occurred via the evolution of (1) longer hind limbs relative to body size, and (2) a higher physiologically optimum temperature for sprinting. For ectotherms, which experience variable body temperatures while active, sprinting abilities in nature depend on both maximum capacities and relative performance levels (i.e., percent of maximum) that can be attained. With respect to temperature effects, relative performance levels are determined by the interaction between thermal physiology and thermoregulatory behavior. Among the 13 species or subspecies of lizards in the present study, differences in the optimal temperature for sprinting (body temperature at which lizards run fastest) closely matched interspecific variation in median preferred body temperature (measured in a laboratory photothermal gradient), indicating correlated evolution of thermal physiology and thermal preferences. Variability of the preferred body temperatures maintained by each species is, across species, negatively correlated with the thermal-performance breadth (range of body temperatures over which lizards can run relatively fast). This pattern leads to interspecific differences in the levels of relative sprint speed that lizards are predicted to attain while active at their preferred temperatures. The highest levels of predicted relative performance are achieved by species that combine a narrow, precise distribution of preferred temperatures with the ability to sprint at near-maximum speeds over a wide range of body temperatures. The observed among-species differences in predicted relative speed were positively correlated with the interspecific variation in maximum sprinting capacities. Thus, species that attain the highest maximum speeds are (1) also able to run at near-maximum levels over a wide range of temperatures and (2) also maintain body temperatures within a narrow zone near the optimal temperature for sprinting. The observed pattern of correlated evolution therefore has involved traits at distinct levels of biological organization, that is, morphology, physiology, and behavior; and trade-offs are not evident. We hypothesize that this particular trait combination has evolved in response to coadaptational selection pressures. We also discuss our results in the context of possible evolutionary responses to global climatic change.  相似文献   

8.
A key assumption in evolutionary studies of locomotor adaptation is that standard laboratory measures of performance accurately reflect what animals do under natural circumstances. One widely examined measure of performance is maximum sprint speed, which is believed to be important for eluding predators, capturing prey, and defending territories. Previous studies linking maximum sprint speed to fitness have focused on laboratory measurements, and we suggest that such analyses may be appropriate for some species and intraspecific classes, but not others. We provide evidence for a general inverse relationship between maximum laboratory sprint speed and the percentage of maximum capacity that animals use when escaping from a threat in the field (the model of locomotor compensation). Further, absolute values of field escape speed and maximum laboratory speed are not significantly related when comparing across a diverse group of Anolis and lacertid lizards. We show that this pattern of locomotor compensation holds both within (i.e., among intraspecific classes) and among lizard species (with some exceptions). We propose a simple method of plotting field escape speed (y-axis) versus maximum laboratory speed (x-axis) among species and/or intraspecific classes that allows researchers to determine whether their study organisms are good candidates for relating laboratory performance to fitness. We suggest that species that reside directly on, or near the "best fitness line" (field escape speed = maximum laboratory speed) are most likely to bear fruit for such studies.  相似文献   

9.
The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p < 0.01) were obtained with all the power measures obtained during both ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p < 0.05) were found with sprint times in all the sprint distances measured when squat strength was expressed as a relative value; however, in the absolute mode, no significant relationships were observed with 10- and 20-m sprint times. No significant relationship was found between 10-m sprint time and relative or absolute power outputs using either ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p < 0.05) were observed between sprint times at 30 and 40 m and the absolute/relative power measures attained in both ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power outputs for both squat exercises are statistically correlated to most sprint distances underlying the importance of strength and power to sprinting.  相似文献   

10.
Adaptationist theory predicts that species will evolve functional specializations for occupying different ecological niches. However, whereas performance traits are often complex, most comparative functional studies examine only simple measures of performance (e.g., sprint speed). Here we examine multiple facets of jumping biomechanics in 12 species of Caribbean Anolis lizards. These 12 species represent six ecomorphs, which are distinct ecological and morphological entities that have independently evolved on different Caribbean islands. We first show that the optimal angles for jumping maximum horizontal distances range from 39 degrees to 42 degrees, but the average jump angle of the 12 species is about 36 degrees. Interestingly, these "suboptimal" jumping angles result in only a small decrement in jump distance but substantial savings in flight duration and jump height. Further, our data show that the two key variables associated with increased jumping velocity (hindlimb length and takeoff acceleration) are independent of one another. Thus, there are two possible ways to achieve superior jumping capabilities: to evolve more muscular limbs--as stronger legs will produce more force and, hence, more acceleration--or evolve longer limbs. Our data show that anole species face trade-offs that prevent them from simultaneously optimizing different aspects of jumping ability but that they appear to have evolved behaviors that partially overcome these trade-offs.  相似文献   

11.
Husak JF 《Oecologia》2006,150(2):339-343
Locomotor ability is well-documented to decrease in gravid female lizards. However, no studies have examined what proportion of maximal sprint speed capacity gravid females use in nature or how a reduction in maximal capacity translates to changes in sprint speeds used in nature. Gravid females may compensate for reduced locomotor ability by increasing the proportion of their maximal capacity used in nature, or by changing their antipredator behaviour. I measured maximal sprint speed in the laboratory for female collared lizards (Crotaphytus collaris) while gravid and nongravid and then compared those to speeds used in the field while foraging and escaping predators, and also while gravid and nongravid. Females had significantly lower maximal sprint speed capacity while gravid, and they ran slower while foraging and escaping predators. However, gravid females did not increase the proportion of maximal capacity used in those contexts compared to when not gravid. Gravid females compensated for reduced locomotor capacity by staying closer to refugia but not by remaining more cryptic. These results suggest that the costs of reduced locomotor capacity may not be associated with direct costs while foraging or escaping predators, but instead with potential indirect effects associated with the change in antipredator behaviour.  相似文献   

12.
Sprinting and jumping ability are key performance measures that have been widely studied in vertebrates. The vast majority of these studies, however, use methodologies that lack an ecological context by failing to consider the complex habitats in which many animals live. Because successfully navigating obstacles within complex habitats is critical for predator escape, running, climbing, and/or jumping performance are each likely to be exposed to selection. In the present study, we quantify how behavioural strategies and locomotor performance change with increasing obstacle height. Obstacle size had a significant influence on behaviour (e.g. obstacle crossing strategy, intermittent locomotion) and performance (e.g. sprint speed, jump distance). Jump frequency and distance increased with obstacle size, suggesting that it likely evolved because it is more efficient (i.e. it reduces the time and distance required to reach a target position). Jump angle, jump velocity, and approach velocity accounted for 58% of the variation in jump distance on the large obstacle, and 33% on the small obstacle. Although these variables have been shown to significantly influence jump distance in static jumps, they do not appear to be influential in running (dynamic) jumps onto a small obstacle. Because selection operates in simple and complex habitats, future studies should consider quantifying additional measures such as jumping or climbing with respect to the evolution of locomotion performance. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   

13.
To understand how selection acts on performance capacity, the ecological role of the performance trait being measured must be determined. Knowing if and when an animal uses maximal performance capacity may give insight into what specific selective pressures may be acting on performance, because individuals are expected to use close to maximal capacity only in contexts important to survival or reproductive success. Furthermore, if an ecological context is important, poor performers are expected to compensate behaviorally. To understand the relative roles of natural and sexual selection on maximal sprint speed capacity we measured maximal sprint speed of collared lizards (Crotaphytus collaris) in the laboratory and field-realized sprint speed for the same individuals in three different contexts (foraging, escaping a predator, and responding to a rival intruder). Females used closer to maximal speed while escaping predators than in the other contexts. Adult males, on the other hand, used closer to maximal speed while responding to an unfamiliar male intruder tethered within their territory. Sprint speeds during foraging attempts were far below maximal capacity for all lizards. Yearlings appeared to compensate for having lower absolute maximal capacity by using a greater percentage of their maximal capacity while foraging and escaping predators than did adults of either sex. We also found evidence for compensation within age and sex classes, where slower individuals used a greater percentage of their maximal capacity than faster individuals. However, this was true only while foraging and escaping predators and not while responding to a rival. Collared lizards appeared to choose microhabitats near refugia such that maximal speed was not necessary to escape predators. Although natural selection for predator avoidance cannot be ruled out as a selective force acting on locomotor performance in collared lizards, intrasexual selection for territory maintenance may be more important for territorial males.  相似文献   

14.
The purpose of this study was to investigate the acute effects of countermovement jumping and sprinting on shot put performance in experienced shot putters. Ten shot putters (best performance 13.16-20.36 m) participated in the study. After a standard warm-up including jogging, stretching, and 4-6 submaximal puts, they performed 3 shot put attempts with maximum effort, separated with 1.5-minute interval. Three minutes later, they performed 3 maximal consecutive countermovement jumps (CMJs). Immediately after jumping, they performed 3 shot put attempts with maximum effort, separated with a 1.5-minute interval. One week later, they carried out a similar protocol, at similar external conditions, but they performed a bout of 20-m sprinting instead of the CMJs, to potentiate shot put performance. Muscular strength (1 repetition maximum in squat, snatch, bench press, incline bench press) and body composition (dual x-ray absorptiometry) were measured during the same training period (±10 days from the jumping and sprinting protocols). Shot put performance was significantly increased after the CMJs (15.45 ± 2.36 vs. 15.85 ± 2.41 m, p = 0.0003). Similarly, shot put performance was significantly increased after sprinting (15.34 ± 2.41 vs. 15.90 ± 2.46 m, p = 0.0007). The increase in performance after sprinting was significantly higher compared with the increase after jumping (2.64 ± 1.59 vs. 3.74 ± 1.88%, p = 0.02). In conclusion, the results of this study indicate that a standard warm-up protocol followed by 3 maximal bouts of shot put and either 3 consecutive countermovement jumps or a bout of 20-m sprinting induce an acute increase in shot put performance in experienced shot putters.  相似文献   

15.
Maximal locomotor performance is often used as a proxy for fitness. Maximal speed may be important under high‐threat conditions, such as during predator escape. However, animals do not always move at a speed that reflects their maximal physiological capacities when undisturbed. The physiological factors that determine the movement speed chosen by animals, such as minimization of energy use, may be independent from maximal performance. As a result, the casual speed at which individuals move when undisturbed in a given context may better represent an individual's motivation to move. The casual speed may therefore be a better predictor of fitness in natural contexts than maximal performance capacity. We tested the hypothesis that casual movement speed rather than maximal speed predicts fitness in the golden orb‐web spider, Nephila plumipes. We measured fitness in two separate contexts, mate‐searching success and the positional rank near a female. We show that casual but not maximal locomotor speed predicted both aspects of fitness. Casual speed was linearly related to maximal speed, indicating that casual speed is determined by physiological optimization. Size and metabolic scope were not related to either maximal or chosen speeds, indicating that the supply of ATP does not limit locomotor performance in this species. Overall, our results demonstrate that locomotor performance is related to fitness, but suggest that different types of performance and not necessarily maximal physiological capacities are most relevant for particular ecologically relevant tasks.  相似文献   

16.
The primary purpose of this study was to investigate whether the athlete who has high performance in hang power clean, a common weightlifting exercise, has high performances in sprinting, jumping, and changing of direction (COD). As the secondary purpose, relationships between hang power clean performance, maximum strength, power and performance of jumping, sprinting, and COD also were investigated. Twenty-nine semiprofessional Australian Rules football players (age, height, and body mass [mean +/- SD]: 21.3 +/- 2.7 years, 1.8 +/- 0.1 m, and 83.6 +/- 8.2 kg) were tested for one repetition maximum (1RM) hang power clean, 1RM front squat, power output during countermovement jump with 40-kg barbell and without external load (CMJ), height of CMJ, 20-m sprint time, and 5-5 COD time. The subjects were divided into top and bottom half groups (n = 14 for each group) based on their 1RM hang power clean score relative to body mass, then measures from all other tests were compared with one-way analyses of variance. In addition, Pearson's product moment correlations between measurements were calculated among all subjects (n = 29). The top half group possessed higher maximum strength (P < 0.01), power (P < 0.01), performance of jumping (P < 0.05), and sprinting (P < 0.01). However, there was no significant difference between groups in 5-5 COD time, possibly because of important contributing factors other than strength and power. There were significant correlations between most of, but not all, combinations of performances of hang power clean, jumping, sprinting, COD, maximum strength, and power. Therefore, it seems likely there are underlying strength qualities that are common to the hang power clean, jumping, and sprinting.  相似文献   

17.
It has been suggested that the force-velocity relationship of skeletal muscle plays a critical limiting role in the maximum speed at which humans can sprint. However, this theory has not been tested directly, and it is possible that other muscle mechanical properties play limiting roles as well. In this study, forward dynamics simulations of human sprinting were generated using a 2D musculoskeletal model actuated by Hill muscle models. The initial simulation results compared favorably to kinetic, kinematic, and electromyographic data recorded from sprinting humans. Muscle mechanical properties were then removed in isolation to quantify their effect on maximum sprinting speed. Removal of the force-velocity, excitation-activation, and force-length relationships increased the maximum speed by 15, 8, and 4%, respectively. Removal of the series elastic force-extension relationship decreased the maximum speed by 26%. Each relationship affected both stride length and stride frequency except for the force-length relationship, which mainly affected stride length. Removal of all muscular properties entirely (optimized joint torques) increased speed (+22%) to a greater extent than the removal of any single contractile property. The results indicate that the force-velocity relationship is indeed the most important contractile property of muscle regarding limits to maximum sprinting speed, but that other muscular properties also play important roles. Interactions between the various muscular properties should be considered when explaining limits to maximal human performance.  相似文献   

18.
Most animals rely on their escape speed to flee from predators. Here, we test several hypotheses on the evolution of escape speed in the lizard Psammodromus algirus. We test that: (1) Longer limbs should improve speed sprint. (2) Heavier lizards should be impaired regarding their sprint speed ability, suggesting a trade-off between fat storage and escape capability. (3) Males should achieve faster speeds due to their higher exposure to predators. (4) Gravid females, with increased body mass, should perform lower speed than non-gravid females. And (5) there are inter-population differences in sprint speed across an elevational gradient. We measured lizards sprint speed in a lineal raceway in the laboratory, filming races in standardized conditions and then calculating their maximal speed. We found that hind limb length greatly determined maximal sprint speed, lizards with longer limbs being faster. In parallel, higher body masses reduced maximal speed, which points to a trade-off between fat storage and escaping capability. Sexual differences also arose, as males were faster than females, as a consequence of males having longer limbs. Regarding females, gravidity did not impair maximal sprint speed, suggesting adaptations which compensate for the increased body mass. Finally, we found no elevational trend in both limbs length and sprint speed. In any case, this study suggests that selection on escape capacity may cast morphological evolution, and affect other life-history traits, such as fat storage and reproduction.  相似文献   

19.
Correlations between an animal's morphology and ecological parameters such as habitat characteristics emphasize the intimate link between phenotype and the environment, but are often difficult to interpret because the functional consequences of morphological variation are frequently unknown. We provide one of the few studies relating limb morphology, functional capabilities, and habitat in reptiles. We tested the hypothesis that species occupying open microhabitats would possess relatively longer limbs and faster sprint speeds than those occurring in more closed microhabitats. A number of morphological characteristics relevant to locomotion were quantified, including the length of the bones of the fore- and hindlimbs and body size. A phylogenetic analysis was then used to examine the evolutionary relationships between morphology, locomotor performance and microhabitat openness in seven species of Niveoscincus and one species of the closely related genus Pseudemoia. A significant evolutionary relationship was established between sprinting ability, morphology, and the openness of the microhabitat occupied by a species. The phylogenetic analysis demonstrated an evolutionary trend in Niveoscincus of species occupying open microhabitats (e.g. N. greeni, N ocellatus) being large with long limbs and high sprinting ability, while those occupying closed microhabitats (e.g. N coventryi, P. entrecasteauxii) art smaller with short limbs and much slower maximum sprint speeds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号