首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The barley (Hordeum vulgare) gene HvALMT1 encodes an anion channel in guard cells and in certain root tissues indicating that it may perform multiple roles. The protein localizes to the plasma membrane and facilitates malate efflux from cells when constitutively expressed in barley plants and Xenopus oocytes. This study investigated the function of HvALMT1 further by identifying its tissue‐specific expression and by generating and characterizing RNAi lines with reduced HvALMT1 expression. We show that transgenic plants with 18–30% of wild‐type HvALMT1 expression had impaired guard cell function. They maintained higher stomatal conductance in low light intensity and lost water more rapidly from excised leaves than the null segregant control plants. Tissue‐specific expression of HvALMT1 was investigated in developing grain and during germination using transgenic barley lines expressing the green fluorescent protein (GFP) with the HvALMT1 promoter. We found that HvALMT1 is expressed in the nucellar projection, the aleurone layer and the scutellum of developing barley grain. Malate release measured from isolated aleurone layers prepared from imbibed grain was significantly lower in the RNAi barley plants compared with control plants. These data provide molecular and physiological evidence that HvALMT1 functions in guard cells, in grain development and during germination. We propose that HvALMT1 releases malate and perhaps other anions from guard cells to promote stomatal closure. The likely roles of HvALMT1 during seed development and grain germination are also discussed.  相似文献   

2.
3.
During rice grain filling, grain moisture content and weight show dynamic changes. We focused on the expression of all 33 rice aquaporins in developing grains. Only two aquaporin genes, OsPIP2;1 and OsTIP3;1, were highly expressed in the period 10–25 days after heading (DAH). High-temperature treatment from 7 to 21 DAH abolished the dynamic up-regulation of OsPIP2;1 in the period 15–20 DAH, whereas OsTIP3;1 expression was not affected. Immunohistochemical analysis revealed that OsPIP2;1 was present in the starchy endosperm, nucellar projection, nucellar epidermis, and dorsal vascular bundles, but not in the aleurone layer. OsTIP3;1 was present in the aleurone layer and starchy endosperm. Water transport activity of recombinant OsTIP3;1 was low, in contrast to the high activity of recombinant OsPIP2;1 we reported previously. Our data suggest that OsPIP2;1 and OsTIP3;1 have distinct roles in developing grains.  相似文献   

4.
Late maturity alpha-amylase (LMA) in wheat is a genetic defect that may result in the accumulation of unacceptable levels of high pI alpha-amylase in grain in the absence of germination or weather damage. During germination, gibberellin produced in the embryo triggers expression of alpha-Amy genes, the synthesis of alpha-amylase and, subsequently, cell death in the aleurone. LMA also involves the aleurone and whilst LMA appears to be independent of the embryo there is nevertheless some evidence that gibberellin is involved. The aim of this investigation was to determine whether the increase in alpha-amylase activity in LMA-prone genotypes, like alpha-amylase synthesis by aleurone cells in germinating or GA-challenged grains, is followed by aleurone cell death. Programmed cell death was seen in aleurone layers from developing, ripe and germinated grains using confocal microscopy and fluorescent probes specific for dead or living cells. Small pockets of dying cells were observed distributed at random throughout the aleurone of ripening LMA-affected grains and by harvest-ripeness these cells were clearly dead. The first appearance of dying cells, 35 d post-anthesis, coincided with the later part of the 'window of sensitivity' in grain development in LMA-prone wheat cultivars. No dead or dying cells were present in ripening or fully ripe grains of control cultivars. In germinating grains, dying cells were observed in the aleurone adjacent to the scutellum and, as germination progressed, the number of dead cells increased and the affected area extended further towards the distal end of the grain. Aside from the obvious differences in spatial distribution, dying cells in 20-24 h germinated grains were similar to dying cells in developing LMA-affected grains, consistent with previous measurements of alpha-amylase activity. The increase in high pI alpha-amylase activity in developing grains of LMA-prone cultivars, like alpha-amylase synthesis in germinating grains, is associated with cell death, providing further evidence for the involvement of gibberellin in the LMA response.  相似文献   

5.
Cell-wall Invertase plays an important role in sucrose partitioning between source and sink organs in higher plants. To Investigate the role of cell-wall invertases for seed development In rice (Oryza sativa L.), cDNAs of three putative cell-wall invertase genes OsCIN1, OsCIN2 and OsCIN3 were Isolated. Semi-quantitative reverse transcdption-polymerase chain reaction analysis revealed different expression patterns of the three genes in various rice tissues/organs. In developing ceryopses, they exhibited similar temporal expression patterns, expressed highly at the early and middle grain filling stages and gradually declined to low levels afterward. However, the spatial expression patterns of them were very different, with OsCIN1 primarily expressed in the ceryopsis coat, OsCIN2 in embryo and endosperm, and OsCIN3 In embryo. Further RNA in situ hybridization analysis revealed that a strong signal of OsCIN2 mRNA was detected In the vascular parenchyma surrounding the xylem of the chalazal vein and the aleurone layer, whereas OsCIN3 transcdpt was strongly detected in the vascular parenchyma surrounding the phloem of the chalazal vein, cross.cells, the aleurone layer and the nucellar tissue.These data indicate that the three cell-wall invertase genes play complementary/synergetic roles in assimilate unloading during the grain filling stage. In addition, the cell type-specific expression patterns of OsClN3 In source leaf blades end anthers were also Investigated, and its corresponding physiological roles were discussed.  相似文献   

6.
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   

7.
The bifunctional -amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of -amylases expressed during germination of barley and encoded by the amy1 gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5-flanking region (1033 bp, 1033-asi promoter) and the 3-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   

8.
9.
10.
Development of aleurone and sub-aleurone layers in maize   总被引:1,自引:0,他引:1  
D. J. Kyle  E. D. Styles 《Planta》1977,137(3):185-193
Electron-microscope studies indicate that the aleurone tissue of maize (Zea mays L.) starts developing approximately 10–15 days after pollination in stocks that take ca. 40 days for the aleurone to mature completely. Development commences when specialized endosperm cells adjacent to the maternal nucellar layer start to differentiate. Differentiation is characterized by the formation of aleurone protein bodies and spherosomes. The protein bodies of the aleurone layer have a vacuolar origin whereas the protein bodies of the immediate underlying endosperm cells appear to develop from protrusions of the rough endoplasmic reticulum. Thus, two morphologically and developmentally distinct types of protein bodies are present in these adjacent tissues. The spherosomes of the aleurone layer form early in the development of this tissue and increase in number as the tissue matures. During the final stages of maturation, these spherosomes become closely apposed to the aleurone grains and the plasma membrane. No further changes are apparent in the structure of the aleurone cells after 40 days from pollination when the caryopsis begins to desiccate.  相似文献   

11.
12.
Methods have been developed for the isolation of aleurone protoplasts from developing caryopses of Hordeum vulgare and Triticum aestivum in order to study transient expression of introduced genes. Chimaeric gene constructs were introduced into aleurone protoplasts by polyethylene glycol (PEG). Transient expression directed by the 35S promoter from cauliflower mosaic virus (CaMV) of the reporter gene encoding chloramphenicol acetyl transferase (CAT) was detected in aleurone protoplasts from developing barley and wheat grains. Using a similar construct, CAT activity increased when the alcohol dehydrogenase intron 1 fragment from maize was ligated between the 35S promoter and the CAT coding region. The demonstration of transient expression in protoplasts from developing aleurone layers indicates that they may be useful for investigating tissue and developmental control of genes coding for cereal seed proteins.  相似文献   

13.
Dominguez F  Cejudo FJ 《Plant physiology》1996,112(3):1211-1217
The pattern of endoproteolytic activities occurring during wheat (Triticum aestivum, cultivar Chinese Spring) grain development was investigated. Total endoprotease activity, assayed in solution with azocasein as a substrate, increased during the early stages of grain development to reach a maximum at 15 d postanthesis that was maintained until the grain was mature. Endoprotease activity was also assayed in gradient polyacrylamide gels co-polymerized with gelatin. The increase in endoproteolytic activity was due to the appearance of up to 18 endoproteolytic bands that were arbitrarily classified into five groups (A, B, C, D, and E). The presence of serine, aspartic, metallo, and, to a lesser extent, thiol proteases in developing wheat grains was demonstrated by the use of class-specific protease inhibitors. The appearance of the different classes of endoproteases during seed development was subject to temporal control; serine proteases were more abundant at early stages and aspartic and metallo proteases were more abundant at later stages. At intermediate stages of development (15-20 d postanthesis), most of the endoproteases were localized in the aleurone, testa, and embryo. The content of acidic thiol proteases was low in the developing starchy endosperm.  相似文献   

14.
A previous report described several cDNAs corresponding to mRNAs which accumulated in wheat aleurone layers treated with gibberellic acid (GA) (Baulcombe and Buffard, 1983). The protein sequence deduced from one of these clones (2529) has extensive similarity to the thiol protease, cathepsin B from mammalian cells. Southern analysis of wheat DNA has shown that the 2529 mRNA is encoded by a small family of genes carried on the group 4 chromosome. The nucleotide sequence of a member of the gene family expressed at a low level in aleurone layers and the use of a primer extension assay to identify a clone of a member of the gene family producing an abundant mRNA are reported. The 2529 mRNA accumulates in the scutellum and the aleurone layer of germinating grains where its expression is regulated by GA. In the scutellum the expression was restricted to the parenchyma, suggesting that the 2529 product may have a role other than for mobilization of the endosperm.  相似文献   

15.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   

16.
17.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

18.
Recently, we reported on the characterization of the calmodulin (CaM) gene family in wheat [44]. We classified wheat CaM genes into four subfamilies (SFs) designated SF-1 to SF-4, each representing a series of homoeoallelic loci on the homoeologous chromosomes of the three genomes of common wheat. Here we studied the expression of these wheat CaM genes in the course of wheat development. Northern blot analysis using SF-specific probes revealed differences in SF expression levels in different organs and stages of development. Subsequently, cell-specific expression of CaM SFs was investigated by in situ RNA hybridization. In developing seeds, all CaM SFs showed highest expression in the embryo and less in the aleurone and in the starchy endosperm. In primary roots, all four CaM SFs were expressed in the root cap, meristematic regions and in differentiating cells. During development of the roots, expression gradually decreased. The wheat glutenin gene, which was used as a control throughout our experiments, was found to be expressed in the starchy endosperm but not in the aleurone, embryos or vegetative tissues. In stems, at advanced stages of growth, differences in cell-specific expression of CaM SFs were found. For example, SF-2 was highly expressed in differentiating phloem fibers. Thus, CaM genes in common wheat exhibit a developmentally regulated organ-, tissue-, cell- and SF-specific expression patterns.  相似文献   

19.
In the aleurone cells of the quiescent wheat grain endoplasmicreticulum was sparse and present as short profiles. During germinationlong profiles of endoplasmic reticulum developed near to thenuclear membrane and in close association with plastids. Muchof this development occurred during the first 2 d of germination,but further development and stacking of the membranes appearedto take place after this time. The development of the long profileswas independent of the presence of the embryo and thereforeof control by gibberellic acid. On the contrary, after the secondday of germination gibberellic acid produced a decline in theamount of endoplasmic reticulum associated with vesiculationof the reticulum profiles. The results of this ultrastructuralstudy are discussed in the context of available informationon the biosynthesis of phospholipids in aleurone tissue. Someaspects of our results are at variance with those of otherswho have studied the aleurone tissue of barley. These differencesare discussed and suggestions for their resolution are made.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号