首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the mouse, at least 16 genes regulate vesicle trafficking to specialized lysosome-related organelles, including platelet dense granules and melanosomes. Fourteen of these genes have been identified by positional cloning. All 16 mouse mutants are models for the genetically heterogeneous human disease, Hermansky-Pudlak Syndrome (HPS). Five HPS genes encode known vesicle trafficking proteins. Nine genes are novel, are found only in higher eukaryotes and encode members of three protein complexes termed BLOCs (Biogenesis of Lysosome-related Organelles Complexes). Mutations in murine HPS genes, which encode protein co-members of BLOCs, produce essentially identical phenotypes. In addition to their well-known effects on pigmentation, platelet function and lysosome secretion, HPS genes control a wide range of physiological processes including immune recognition, neuronal functions and lung surfactant trafficking. Studies of the molecular functions of HPS proteins will reveal important details of vesicle trafficking and may lead to therapies for HPS.  相似文献   

2.
Hermansky-Pudlak Syndrome (HPS), a recessively inherited disease in humans, affects the biosynthesis/processing of the related intracellular organelles: lysosomes, melanosomes, and platelet dense granules. The disease is multigenic in both humans and mice where 14 separate genes have been demonstrated to be causative. Patients often die prematurely with severe lung abnormalities. Patients with the related Chediak-Higashi Syndrome (CHS) likewise have significantly reduced life spans. Long-term survival and lung histomorphology were analyzed in a pilot experiment involving several genetically defined singly and doubly mutant mouse HPS mutants and the beige CHS mutant to determine whether these parameters are altered in the mouse models. The mutants differed widely in both longevity and lung architecture. Mice doubly homozygous for the pale ear and ruby eye or for the muted and pearl genes had the shortest life spans with none surviving the two-year experimental duration. Life spans were similarly severely reduced in the beige and gunmetal mutants. Intermediate life spans were apparent in the pearl, pallid, and cocoa mutants whereas minimal effects were noted in ruby eye, muted, light ear, and cocoa mutants. Enlarged air spaces were noted in histologic sections of lungs of several of the mutants. For the most part, the severity of lung abnormalities was inversely proportional to the long-term survival of these various mutants, suggesting that lung pathology may contribute to mortality, as has been suggested for human HPS patients.  相似文献   

3.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease affecting vesicle trafficking among lysosome-related organelles. The Hps3, Hps5, and Hps6 genes are mutated in the cocoa, ruby-eye-2, and ruby-eye mouse pigment mutants, respectively, and their human orthologs are mutated in HPS3, HPS5, and HPS6 patients. These three genes encode novel proteins of unknown function. The phenotypes of Hps5/Hps5,Hps6/Hps6 and Hps3/Hps3,Hps6/Hps6 double mutant mice mimic, in coat and eye colors, in melanosome ultrastructure, and in levels of platelet dense granule serotonin, the corresponding phenotypes of single mutants. These facts suggest that the proteins encoded by these genes act within the same pathway or protein complex in vivo to regulate vesicle trafficking. Further, the Hps5 protein is destabilized within tissues of Hps3 and Hps6 mutants, as is the Hps6 protein within tissues of Hps3 and Hps5 mutants. Also, proteins encoded by these genes co-immunoprecipitate and occur in a complex of 350 kDa as determined by sucrose gradient and gel filtration analyses. Together, these results indicate that the Hps3, Hps5, and Hps6 proteins regulate vesicle trafficking to lysosome-related organelles at the physiological level as components of the BLOC-2 (biogenesis of lysosome-related organelles complex-2) protein complex and suggest that the pathogenesis and future therapies of HPS3, HPS5, and HPS6 patients are likely to be similar. Interaction of the Hps5 and Hps6 proteins within BLOC-2 is abolished by the three-amino acid deletion in the Hps6(ru) mutant allele, indicating that these three amino acids are important for normal BLOC-2 complex formation.  相似文献   

4.
5.
Hermansky-Pudlak syndrome (HPS) is a genetically heterogeneous inherited disease causing hypopigmentation and prolonged bleeding times. An additional serious clinical problem of HPS is the development of lung pathology, which may lead to severe lung disease and premature death. No cure for the disease exists, and previously, no animal model for the HPS lung abnormalities has been reported. A mouse model of HPS, which is homozygously recessive for both the Hps1 (pale ear) and Hps2 (pearl) genes, exhibits striking abnormalities of lung type II cells. Type II cells and lamellar bodies of this mutant are greatly enlarged, and the lamellar bodies are engorged with surfactant. Mutant lungs accumulate excessive autofluorescent pigment. The air spaces of mutant lungs contain age-related elevations of inflammatory cells and foamy macrophages. In vivo measurement of lung hysteresivity demonstrated aberrant lung function in mutant mice. All these features are similar to the lung pathology described in HPS patients. Morphometry of mutant lungs indicates a significant emphysema. These mutant mice provide a model to further investigate the lung pathology and therapy of HPS. We hypothesize that abnormal type II cell lamellar body structure/function may predict future lung pathology in HPS.  相似文献   

6.
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases.  相似文献   

7.
Hermansky-Pudlak syndrome (HPS) consists of a group of genetically heterogeneous disorders which share the clinical findings of oculocutaneous albinism, a platelet storage pool deficiency, and some degree of ceroid lipofuscinosis. Related diseases share some of these findings and may exhibit other symptoms and signs but the underlying defect in the entire group of disorders involves defective intracellular vesicle formation, transport or fusion. Two HPS-causing genes, HPS1 and ADTB3A, have been isolated but the function of only the latter has been determined. ADTB3A codes for the beta 3A subunit of adaptor complex-3, responsible for vesicle formation from the trans-Golgi network (TGN). The many HPS patients who do not have HPS1 or ADTB3A mutations have their disease because of mutations in other genes. Candidates for these HPS-causing genes include those responsible for mouse models of HPS or for the 'granule' group of eye color genes in Drosophila. Each gene responsible for a subset of HPS or a related disorder codes for a protein which almost certainly plays a pivotal role in vesicular trafficking, inextricably linking clinical and cell biological interests in this group of diseases.  相似文献   

8.
Hermansky-Pudlak syndrome (HPS) is a group of human disorders of organelle biogenesis characterized by defective synthesis of melanosomes, lysosomes, and platelet dense granules. In the mouse, at least 15 loci are associated with mutant phenotypes similar to human HPS. We have identified the gene mutated in cocoa (coa) mice, which is associated with an HPS-like mutant phenotype and thus represents a strong candidate for human HPS. Analysis of coa-mutant mice and cultured coa-mutant mouse melanocytes indicates that the normal coa gene product is involved in early stages of melanosome biogenesis and maturation.  相似文献   

9.
Hermansky Pudlak syndrome (HPS) is a heterogeneous recessive genetic disease with a tendency to develop lung fibrosis with aging. A mouse strain with two mutant HPS genes affecting separate vesicle trafficking pathways, C57BL/6-Hps1 ep -Ap3b1 pe , exhibits severe lung abnormalities at young ages, including enlarged alveolar type II (ATII) cells with giant lamellar bodies and foamy alveolar macrophages (AMs), which are readily identified histologically. In this study, the appearance of lung fibrosis in older animals was studied using classical histological and biochemical methods. The HPS double mutant mice, but not Chediak Higashi syndrome (C57BL/6-Lyst bg-J -J, CHS) or C57BL/6J black control (WT) mice, were found to develop lung fibrosis at about 17 months of age using Masson trichrome staining, which was confirmed by hydroxyproline analysis. TGF β1 levels were elevated in bronchial alveolar lavage samples at all ages tested in the double mutant, but not WT or CHS mice, indicative of a prefibrotic condition in this experimental strain; and AMs were highly positive for this cytokine using immunohistochemistry staining. Prosurfactant protein C staining for ATII cells showed redistribution and dysmorphism of these cells with aging, but there was no evidence for epithelial-mesenchymal transition of ATII cells by dual staining for prosurfactant C protein and α-smooth muscle actin. This investigation showed that the HPS double mutant mouse strain develops interstitial pneumonia (HPSIP) past 1 year of age, which may be initiated by abnormal ATII cells and exacerbated by AM activation. With prominent prefibrotic abnormalities, this double mutant may serve as a model for interventive therapy in HPS.  相似文献   

10.
Hermansky-Pudlak syndrome (HPS) is genetically heterogeneous, and mutations in seven genes have been reported to cause HPS. Autozygosity mapping studies were undertaken in a large consanguineous family with HPS. Affected individuals displayed features of incomplete oculocutaneous albinism and platelet dysfunction. Skin biopsy demonstrated abnormal aggregates of melanosomes within basal epidermal keratinocytes. A homozygous germline frameshift mutation in BLOC1S3 (p.Gln150ArgfsX75) was identified in all affected individuals. BLOC1S3 mutations have not been previously described in patients with HPS, but BLOC1S3 encodes a subunit of the biogenesis of lysosome-related organelles complex 1 (BLOC-1). Mutations in other BLOC-1 subunits have been associated with an HPS phenotype in humans and/or mouse, and a nonsense mutation in the murine orthologue of BLOC1S3 causes the reduced pigmentation (rp) model of HPS. Interestingly, eye pigment formation is reported to be normal in rp, but we found visual defects (nystagmus, iris transilluminancy, foveal hypoplasia, reduced visual acuity, and evidence of optic pathway misrouting) in affected individuals. These findings define a novel form of human HPS (HPS8) and extend genotype-phenotype correlations in HPS.  相似文献   

11.
Hermansky-Pudlak syndrome (HPS) is a rare disorder caused by malfunctions of lysosomes and specialized lysosome-related organelles, resulting primarily in oculocutaneous albinism and bleeding diathesis. The majority of the HPS genes have been described as novel, but herein we report the identification of a conserved protein family which includes human HPS4, as well as distant homologs for other HPS genes. Our results suggest that the cellular machinery involved in the HPS syndrome is ancient.  相似文献   

12.
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive inherited disease consisting of (1) partial oculocutaneous albinism (with nystagmus, strabism, and visual acuity loss), (2) platelet storage pool deficiency (with bleeding diathesis), and (3) disorder of "ceroid" metabolism with a multisystem tissue lysosomal ceroid deposition. HPS is less uncommon in Puerto Rico, where the most important studies have been performed, but is a very rare disease in Europe. HPS basic defect remains unknown, even if an HPS-causing gene was identified in chromosome segment 10q23-q23.3, and several mutations have been reported. The aim of this article is to discuss, on the basis of a review of relevant literature, a new familial HPS clinical variant observed in 2 young sisters (aged 16 and 23 years old, respectively), characterized by the typical symptoms of this syndrome. Our patients also suffered from diffuse interstitial pulmonary disease and an unexpectedly increased platelet aggregation and were prone to bacterial infections. Interestingly, we observed urinary tract abnormality in the younger HPS sister and a porencephalic cyst in the older HPS sister; both of these developmental defects have been reported in the Cross syndrome (or oculocerebral hypopigmentation syndrome). It seems that in our patients, an overlapping of the phenotypic manifestations of different rare syndromes may be present. The presence of ceroid-like autofluorescent material in urinary sediment together with the histologic aspects and the autofluorescence of oral mucosa biopsy are consistent with a ceroid-like lipofuscin storage. HPS should be carefully tested for in suspected cases to prevent the severe visual impairment, rapidly progressive pulmonary fibrosis, and other complications associated with this disorder.  相似文献   

13.
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder that affects pigment production and platelet function and causes the deposition of a ceroid-like material in various tissues. Variability in the phenotype and the presence of several potential mouse models suggest that HPS may be a heterogeneous disorder. In order to identify a gene responsible for HPS, we collected blood samples from a relatively homogeneous population in Puerto Rico where the HPS carrier frequency is estimated to be 1 in 21. Analysis of pooled DNA samples allowed us to rapidly screen the genome for candidate loci, and significant evidence for linkage was detected for a marker on chromosome 10q. This region of the human genome is conserved syntenically with the region on mouse chromosome 19 where two possible mouse models for HPS, pale ear and ruby eye, are located. This linkage result was verified with additional markers, and a maximum LOD score of 5.07 at theta = .001 was calculated for marker D10S198. Haplotype analysis places the HPS gene in a region of approximately 14 cM that contains the markers D10S198 and D10S1239.  相似文献   

14.
Ten phenotypic forms of oculocutaneous albinism (OCA) and four forms of ocular albinism (OA) have been identified in man. All have optic neuronal decussation defects at the optic chiasm. Thus any proposed animal model for these disorders must share optic neuronal decussation defects in addition to hypopigmentation. Three, tyrosinase-negative (ty-neg), yellow mutant (ym), and platinum (pt), OCA appear to be allelic in humans. Two, ty-neg and pt, OCA appear to be analogous to c-locus mutants c/c and cp/cp in mice, but no homologue is known in mice for ym OCA. Tyrosinase-positive (ty-pos) OCA, which is nonallelic with ty-neg OCA, shares many morphological and biochemical features with pink-eyed mice. Chediak-Higashi syndrome (CHS) and Hermansky-Pudlak syndrome (HPS) appear to be due to genes acting extrinsic to the melanin pathway. CHS is homologous with beige in mice. HPS was investigated in northwestern Puerto Rico, where it affects approximately 1 in 2,000 persons. Approximately 68% of 37 deceased HPS patients died from sequelae of ceroid storage disease, restrictive lung disease between ages 35 and 46 years (43%), and granulomatous colitis (8%) or hemorrhage (16%). The most accurate and consistent diagnostic feature of HPS is lack of platelet dense bodies. HPS patients with ceroid storage disease had high urinary levels of long-chain isoprenoid alcohols, dolichols, similar to that seen in the neuronal-ceroid lipofuscinoses (Batten disease). Dolichols are constituents of lysosomes, and their elevation in HPS suggests that this syndrome carries a lysosomal defect. There is no degradative pathway for ceroid and dolichols, which are eliminated by exocytosis. The exocytic process is thought to involve a thioendoproteinase. Pale-ear mice have been proposed as a model for HPS; their platelets lack dense bodies, and they are depigmented. Leupeptin, a thioendoproteinase inhibitor, administered to 100-day-old pale-eared and black wild-type C57 mice for 10 days resulted in the accumulation of ceroid in tissues in the same pattern as that in HPS, but granulomas of gut or fibrosis of lungs were not seen. Determinations of homology between mice and men at the molecular level is now possible with the isolation of mouse tyrosinase by Yamamoto et al. and isolation by Kwon et al. of human tyrosinase mapping at the c-locus in mice.  相似文献   

15.
Hermansky-Pudlak syndrome: vesicle formation from yeast to man   总被引:12,自引:0,他引:12  
The disorders known as Hermansky-Pudlak syndrome (HPS) are a group of genetic diseases resulting from abnormal formation of intracellular vesicles. In HPS, dysfunction of melanosomes results in oculocutaneous albinism, and absence of platelet dense bodies causes a bleeding diathesis. In addition, some HPS patients suffer granulomatous colitis or fatal pulmonary fibrosis, perhaps due to mistrafficking of a subset of lysosomes. The impaired function of specific organelles indicates that the causative genes encode proteins operative in the formation of certain vesicles. Four such genes, HPS1, ADTB3A, HPS3, and HPS4, are associated with the four known subtypes of HPS, i.e. HPS-1, HPS-2, HPS-3, and HPS-4. ADTB3A codes for the beta 3 A subunit of adaptor complex-3, known to assist in vesicle formation from the trans-Golgi network or late endosome. However, the functions of the HPS1, HPS3, and HPS4 gene products remain unknown. These three genes arose with the evolution of mammals and have no homologs in yeast, reflecting their specialized function. In contrast, all four known HPS-causing genes have homologs in mice, a species with 14 different models of HPS, i.e. hypopigmentation and a platelet storage pool deficiency. Pursuit of the mechanism of mammalian vesicle formation and trafficking, impaired in HPS, relies upon investigation of these mouse models as well as studies of protein complexes involved in yeast vacuole formation.  相似文献   

16.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a ubiquitously expressed multisubunit protein complex required for the normal biogenesis of specialized organelles of the endosomal-lysosomal system, such as melanosomes and platelet dense granules. The complex is known to contain the coiled-coil-forming proteins, Pallidin, Muted, Cappuccino, and Dysbindin. The genes encoding these proteins are defective in inbred mouse strains that serve as models of Hermansky-Pudlak syndrome (HPS), a genetic disorder characterized by hypopigmentation and platelet storage pool deficiency. In addition, mutation of human Dysbindin causes HPS type 7. Here, we report the identification of another four subunits of the complex. One is Snapin, a coiled-coil-forming protein previously characterized as a binding partner of synaptosomal-associated proteins 25 and 23 and implicated in the regulation of membrane fusion events. The other three are previously uncharacterized proteins, which we named BLOC subunits 1, 2, and 3 (BLOS1, -2, and -3). Using specific antibodies to detect endogenous proteins from human and mouse cells, we found that Snapin, BLOS1, BLOS2, and BLOS3 co-immunoprecipitate, and co-fractionate upon size exclusion chromatography, with previously known BLOC-1 subunits. Furthermore, steady-state levels of the four proteins are significantly reduced in cells from pallid mice, which carry a mutation in Pallidin and display secondary loss of other BLOC-1 subunits. Yeast two-hybrid analyses suggest a network of binary interactions involving all of the previously known and newly identified subunits. Interestingly, the HPS mouse model strain, reduced pigmentation, carries a nonsense mutation in the gene encoding BLOS3. As judged from size exclusion chromatographic analyses, the reduced pigmentation mutation affects BLOC-1 assembly less severely than the pallid mutation. Mutations in the human genes encoding Snapin and the BLOS proteins could underlie novel forms of HPS.  相似文献   

17.
Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized principally by oculocutaneous albinism, a bleeding tendency, and a ceroid-lipofuscin lysosomal storage disease. These clinical manifestations of HPS are associated with defects of multiple cytoplasmic organelles--melanosomes, platelet granules, and lysosomes--suggesting that the HPS gene product is involved in some shared feature of the biogenesis or functions of these diverse organelles. The HPS gene has been cloned, and a number of pathologic mutations of the gene have been identified. Functional studies indicate that the HPS protein is part of a high-molecular weight complex involved in the biogenesis of early melanosomes. Additional disorders with similarities to HPS have been identified in man, mouse, flies, and yeast, and it is rapidly becoming clear that understanding these disorders will shed new light on the mechanisms by which cells traffic newly synthesized proteins through the cytoplasm to assemble functional organelles.  相似文献   

18.
19.
20.
Although large-scale copy-number variation is an important contributor to conspecific genomic diversity, whether these variants frequently contribute to human phenotype differences remains unknown. If they have few functional consequences, then copy-number variants (CNVs) might be expected both to be distributed uniformly throughout the human genome and to encode genes that are characteristic of the genome as a whole. We find that human CNVs are significantly overrepresented close to telomeres and centromeres and in simple tandem repeat sequences. Additionally, human CNVs were observed to be unusually enriched in those protein-coding genes that have experienced significantly elevated synonymous and nonsynonymous nucleotide substitution rates, estimated between single human and mouse orthologues. CNV genes encode disproportionately large numbers of secreted, olfactory, and immunity proteins, although they contain fewer than expected genes associated with Mendelian disease. Despite mouse CNVs also exhibiting a significant elevation in synonymous substitution rates, in most other respects they do not differ significantly from the genomic background. Nevertheless, they encode proteins that are depleted in olfactory function, and they exhibit significantly decreased amino acid sequence divergence. Natural selection appears to have acted discriminately among human CNV genes. The significant overabundance, within human CNVs, of genes associated with olfaction, immunity, protein secretion, and elevated coding sequence divergence, indicates that a subset may have been retained in the human population due to the adaptive benefit of increased gene dosage. By contrast, the functional characteristics of mouse CNVs either suggest that advantageous gene copies have been depleted during recent selective breeding of laboratory mouse strains or suggest that they were preferentially fixed as a consequence of the larger effective population size of wild mice. It thus appears that CNV differences among mouse strains do not provide an appropriate model for large-scale sequence variations in the human population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号