首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生态学中的尺度及尺度转换方法   总被引:114,自引:19,他引:95  
吕一河  傅伯杰 《生态学报》2001,21(12):2096-2105
尺度作为生态学的重要范式,已经引起了广泛重视,但对尺度问题的研究还不够成熟.尺度具有多维性特点,即功能尺度、空间尺度、时间尺度等,但生态学研究的重点是空间和时间尺度.并且时空尺度还具有复杂性、变异性特征.尺度研究的根本目的在于通过适宜的空间和时间尺度来揭示和把握复杂的生态学规律.为此,科学有效的尺度选择和尺度转换方法不可或缺.常见的尺度转换方法有图示法、回归分析、变异函数、自相关分析、谱分析、分形和小波变换,同时遥感和地理信息系统技术在尺度研究中也发挥着重要作用.结合实例对上述方法进行了分析和论述,认为各种方法都有其内在的优势和不足,新方法的引入和应用对于尺度转换方法体系的充实和完善非常重要.有关尺度的研究将进一步加强,研究的重点是尺度变异性、不同尺度间的相互作用机制以及尺度转换方法等.  相似文献   

2.
The northern tropical river and wetland systems of Australia cover a vast and mostly remote area. Comparably little is known of wetland type, species diversity, ecological processes and ecosystem services. Systematic inventory and classification is lacking and research remains disparate in purpose and coverage. An integrated framework is used to evaluate results from three multidisciplinary studies across various scales to synthesise available knowledge relating to key ecological attributes across both the study region and within focus areas. The utility of geomorphic and hydrological classification at coarse scales is supported but the unavailability of biological data at corresponding and finer spatial and temporal scales constrains the potential for ecological inventory and classification utilising existing information. Future inventory and ecological studies across this and similar vast study areas need to consider the apriori development of a user-driven data framework and the development of specific investigatory tools to overcome technical and other barriers associated with the requirements of multi-scalar ecological studies.  相似文献   

3.
张彤  蔡永立 《生态科学》2004,23(2):175-178
尺度是生态学中的核心问题,时间和空间尺度包含于任何生态过程中,尺度在生态学研究中越来越显现出其重要性,原因是解决地球环境问题要求在大尺度上理解格局和过程,而以前生态学调查的数据主要是基于小尺度的,并且有许多研究表明,一个生态问题的结论在很大程度上取决于研究所采纳的尺度。但目前尺度研究还存在很多的问题;一些相关概念易与尺度混淆;缺乏成熟的尺度识别方法和系统完备的尺度转换方法等。针对这些问题,本文首先阐明了尺度的确切含义,并对尺度研究的发展历史,重要性作了问题的阐述:分析探讨了尺度与等级理论,格局的关系,及尺度识别,尺度转换的方法和发展趋势。  相似文献   

4.
基于模式识别的景观格局分析与尺度转换研究框架   总被引:25,自引:3,他引:22  
景观格局分析和尺度转换是生态学和地理学研究的核心问题之一.尽管多年来投入了大量的精力,然而由于尺度效应的复杂性和尺度转换过程的不确定性,仍然没有找到合适的方法.目前关于尺度转换的研究存在两个误区,其一是过分重视空间尺度的转换,忽略了过程尺度的转换;其二是过分强调了对不同尺度间数量关系的外推与转换,忽略了不同尺度间生态规律的外推与转换.在系统分析了景观格局与尺度转换研究现状、存在问题和难点的基础上,提出了借用模式识别的原理和方法,针对特定的生态过程,开展景观格局分析与尺度转换的思路.认为尺度转换的关键在于通过识别不同尺度上影响生态过程的主导因子,找到各个尺度上“格局(环境因子空间组合)-过程”、尺度间“格局-格局”之间的对应关系,通过建立“环境-格局-过程”模式识别数据库,就能够建立不同尺度之间基于模式识别的尺度转换方法.  相似文献   

5.
生态学中的尺度问题:内涵与分析方法   总被引:27,自引:9,他引:27  
张娜 《生态学报》2006,26(7):2340-2355
尺度问题已成为现代生态学的核心问题之一.尺度问题主要涉及3个方面:尺度概念、尺度分析和尺度推绎.主要评述前两个方面.生态学尺度有三重概念:维数、种类和组分,其中每重概念又包含了多个定义,有必要进行澄清、分类和统一.尺度分析涉及尺度效应分析和多尺度空间格局分析.格局、过程及它们之间的关系,以及某些景观特性均表现出尺度效应,因此多尺度研究非常必要和重要.多尺度空间格局分析(尤其是特征尺度的识别)是进行尺度效应分析和跨尺度推绎的基础.多尺度分析需要特定的方法,景观指数法是最常用和最简单的方法,但也常产生误导;空间统计学方法(如半方差分析法、尺度方差分析法、空隙度指数法和小波分析法等)和分维分析法在最近十几年发展起来,并逐渐应用于生态学,在尺度分析上具有很大的应用潜力.各种方法在尺度分析上各有优势和不足,有必要同时使用两种或两种以上方法进行比较和评估.总之,有关尺度分析的研究需要进一步加强,从而为下一步的尺度推绎提供可靠的依据.  相似文献   

6.
The Urban Funnel Model and the Spatially Heterogeneous Ecological Footprint   总被引:22,自引:1,他引:21  
Urban ecological systems are characterized by complex interactions between the natural environment and humans at multiple scales; for an individual urban ecosystem, the strongest interactions may occur at the local or regional spatial scale. At the regional scale, external ecosystems produce resources that are acquired and transported by humans to urban areas, where they are processed and consumed. The assimilation of diffuse human wastes and pollutants also occurs at the regional scale, with much of this process occurring external to the urban system. We developed the urban funnel model to conceptualize the integration of humans into their ecological context. The model captures this pattern and process of resource appropriation and waste generation by urban ecosystems at various spatial scales. This model is applied to individual cities using a modification of traditional ecological footprint (EF) analysis that is spatially explicit; the incorporation of spatial heterogeneity in calculating the EF greatly improves its accuracy. The method for EF analysis can be further modified to ensure that a certain proportion of potential ecosystem services are left for in situ processes. Combining EF models of human appropriation with ecosystem process models would help us to learn more about the effects of ecosystem service appropriation. By comparing the results for food and water, we were able to identify some of the potentially limiting ecological factors for cities. A comparison of the EFs for the 20 largest US cities showed the importance of urban location and interurban competition for ecosystem services. This study underscores the need to take multiple scales and spatial heterogeneity into consideration to expand our current understanding of human–ecosystem interactions. The urban funnel model and the spatially heterogeneous EF provide an effective means of achieving this goal. Received 17 October 2000; accepted 31 May 2001.  相似文献   

7.
The outcome of species interactions may manifest differently at different spatial scales; therefore, our interpretation of observed interactions will depend on the scale at which observations are made. For example, in ladybeetle–aphid systems, the results from small‐scale cage experiments usually cannot be extrapolated to landscape‐scale field observations. To understand how ladybeetle–aphid interactions change across spatial scales, we evaluated predator–prey interactions in an experimental system. The experimental habitat consisted of 81 potted plants and was manipulated to facilitate analysis across four spatial scales. We also simulated a spatially explicit metacommunity model parallel to the experiment. In the experiment, we found that the negative effect of ladybeetles on aphids decreased with increasing spatial scales. This pattern can be explained by ladybeetles strongly suppressing aphids at small scales, but not colonizing distant patches fast enough to suppress aphids at larger scales. In the experiment, the positive effects of aphids on ladybeetles were strongest at three‐plant scale. In a model scenario where predators did not have demographic dynamics, we found, consistent with the experiment, that both the effects of ladybeetles on aphids and the effects of aphids on ladybeetles decreased with increasing spatial scales. These patterns suggest that dispersal was the primary cause of ladybeetle population dynamics in our experiment: aphids increased ladybeetle numbers at smaller scales because ladybeetles stayed in a patch longer and performed area‐restricted searches after encountering aphids; these behaviors did not affect ladybeetle numbers at larger spatial scales. The parallel experimental and model results illustrate how predator–prey interactions can change across spatial scales, suggesting that our interpretation of observed predator–prey dynamics would differ if observations were made at different scales. This study demonstrates how studying ecological interactions at a range of scales can help link the results of small‐scale ecological experiments to landscape‐scale ecological problems.  相似文献   

8.
Here we argue that there are two important steps in the decision process to restore ecological system that are often ignored. First, consideration of restoration is in response to observed change in a system, but ecological systems can fluctuate widely in their normal dynamic. Thus, there is an imperative to interpret ecological change; shifts in community structure that represent “typical” fluctuations in a properly functioning ecosystem do not warrant restoration, while change associated with phase shift in the system may well demand restoration action. Second, where restoration effort is warranted, it needs to be determined whether management responses are likely to be successful within resource constraints. Where ecological change involves pronounced hysteresis, even massive effort may have little chance in effecting recovery to a preferred ecosystem state. Theory and models indicate that consideration of the characteristic length scales (CLSs) of ecological systems provides an unambiguous interpretation of ecological change, enabling differentiation of “typical” fluctuations from phase shift, and here we show that CLSs can be calculated for real communities from their species' dynamics, and that their behavior is as predicted from theory. We also show that for ecological systems where local interactions and forcings are well understood, validated simulation models can provide a ready means to identify hysteresis and estimate its magnitude. We conclude that there are useful tools available for ecologists to address the key questions of (1) whether restoration attempts are warranted in the first place and, if they are, (2) whether it is practical to pursue them.  相似文献   

9.
Scale in macroecology   总被引:4,自引:0,他引:4  
The past 15 years have seen the development of macroecology as a respectable discipline within the biological sciences. Initial concerns about the utility of a large‐scale approach to ecology have been quietened, if not eliminated, but other arguments about spatial scale in ecology have arisen to take their place. The situation has moved from the absolute advocacy of small‐scale over large‐scale studies to an advocacy of some large scales in preference to others. Here, we argue that there is no general sense in which one scale of study (either in terms of spatial extent or sampling resolution) is better than any other. As long as there are sensible reasons for using the scale chosen, studies at all scales have the potential to inform about the structure and function of the ecological systems that clothe this planet.  相似文献   

10.
Sessile biota can compete with or facilitate each other, and the interaction of facilitation and competition at different spatial scales is key to developing spatial patchiness and patterning. We examined density and scale dependence in a patterned, soft sediment mussel bed. We followed mussel growth and density at two spatial scales separated by four orders of magnitude. In summer, competition was important at both scales. In winter, there was net facilitation at the small scale with no evidence of density dependence at the large scale. The mechanism for facilitation is probably density dependent protection from wave dislodgement. Intraspecific interactions in soft sediment mussel beds thus vary both temporally and spatially. Our data support the idea that pattern formation in ecological systems arises from competition at large scales and facilitation at smaller scales, so far only shown in vegetation systems. The data, and a simple, heuristic model, also suggest that facilitative interactions in sessile biota are mediated by physical stress, and that interactions change in strength and sign along a spatial or temporal gradient of physical stress.  相似文献   

11.
While investigating biodiversity patterns on different spatial scales, ecological processes determining these patterns have been rarely analysed. Flower visitation by bees is an important ecological process that is related to floral resource availability. However, little is known about whether responses of bee communities to floral resource availability change at different spatial scales. We studied density and species richness of flower-visiting bees in relation to floral resource availability, provided by coffee, in traditional agroforestry systems on a field, shrub, and branch scale. On a field scale, mean bee density per shrub increased with decreasing proportion of flowering coffee shrubs per site, showing a dilution effect. Conversely, on shrub and branch scales bee density per shrub, or shrub part, increased with increasing number of inflorescences, showing a concentration effect. Additionally, bee density per shrub was higher on those that were only partly, rather than totally surrounded by other flowering coffee shrubs. Species richness of flower-visiting bees was positively affected by high resource availability on a shrub and a branch scale, expressed by a high number of inflorescences, but at the field scale the proportion of flowering shrubs per site did not have any effect on species richness. Our results show contrasting responses of the community of flower-visiting bees to floral resource availability, depending on the spatial scale considered. We conclude that patterns of flower-visiting bee communities of only one spatial scale can not be generalized, since the number of pollinators may be limited on a field scale, but not on smaller scales.  相似文献   

12.
Vegetation striped pattern is a common feature in semiarid and arid landscapes, which is seen as mosaics including vegetated and non-vegetated patches. Identifying scales of pattern in ecological systems and referring patterns to multi-scaled processes that create them are ongoing challenges. The aim of this paper is to study the vegetation patterns and their across-scale relationships between the vegetation and anisotropic topography (W–E and N–S) in 12 transects at Gurbantunggut desert. We used wavelet-based across-scale analysis for extracting information on scales of pattern for those transect data, evaluating their inherent structure, and inferring characteristics of the processes that imposed those patterns at across scales. The results show that, in W–E direction, the scales of vegetation pattern (C. ewersmanniana is at the scale 40 m, H. ammodendron, at 35 m) correspond to the dune ridge/dune valley sequences (appearing at distance of 40 m), and vegetation on mesoscale and large scale are significant cross-scale correlation with topography on mesoscale and large scale in all W–E transects. In N–S direction, there is an irregular pattern of vegetation along the N–S irregular topography, and no unified cross-scale relationships between topography and vegetation on different scales in different transects. Moreover, cross-scale correlation analysis between topography and vegetation provides further detail on hierarchical structure and specific scales in space that strongly influenced the larger patterns. Knowledge of the cross-scale relationships between topography and vegetation could lead to better understanding and management of biological resources in that region.  相似文献   

13.
A balanced view of scale in spatial statistical analysis   总被引:25,自引:0,他引:25  
Concepts of spatial scale, such as extent, grain, resolution, range, footprint, support and cartographic ratio are not interchangeable. Because of the potential confusion among the definitions of these terms, we suggest that authors avoid the term "scale" and instead refer to specific concepts. In particular, we are careful to discriminate between observation scales, scales of ecological phenomena and scales used in spatial statistical analysis . When scales of observation or analysis change, that is, when the unit size, shape, spacing or extent are altered, statistical results are expected to change. The kinds of results that may change include estimates of the population mean and variance, the strength and character of spatial autocorrelation and spatial anisotropy, patch and gap sizes and multivariate relationships. The first three of these results (precision of the mean, variance and spatial autocorrelation) can sometimes be estimated using geostatistical support-effect models. We present four case studies of organism abundance and cover illustrating some of these changes and how conclusions about ecological phenomena (process and structure) may be affected. We identify the influence of observational scale on statistical results as a subset of what geographers call the Modifiable Area Unit Problem (MAUP). The way to avoid the MAUP is by careful construction of sampling design and analysis. We recommend a set of considerations for sampling design to allow useful tests for specific scales of a phenomenon under study. We further recommend that ecological studies completely report all components of observation and analysis scales to increase the possibility of cross-study comparisons.  相似文献   

14.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

15.
农村多水塘系统水环境过程研究进展   总被引:3,自引:0,他引:3  
李玉凤  刘红玉  皋鹏飞  季香 《生态学报》2016,36(9):2482-2489
农村多水塘系统由于其不可替代的水资源蓄积和营养物去除功能,广泛分布于我国东部和南部地区。在分析多水塘系统水环境过程研究进展的基础上,指出了目前多水塘系统水环境过程研究中的不足及未来发展趋势。关于多水塘系统的研究主要从两个尺度展开,分别是生态系统尺度和景观尺度。(1)基于生态系统尺度的多水塘系统水环境过程研究主要表现在两方面。首先,多水塘系统在改变区域水文情势上发挥着重大作用。多水塘系统能有效降低流速,且增加地表径流的滞留时间;其次是对多水塘系统水质的研究,主要包括水塘对污染物截留降解能力的研究、水塘底泥和水体之间营养物形态转化和输移机制的研究。(2)基于景观尺度的多水塘系统水环境过程模型研究主要包括构建经验模型和机制模型两方面。经验模型主要是利用统计分析方法分析景观格局与水环境之间关系;适用于农村多水塘系统的水环境机制模型主要包括国外的SWAT、HSPF、DRAINWAT和TOPMODEL模型。农村多水塘系统的研究可以为建设生态新农村提供科学依据。  相似文献   

16.
Natural experiments have been proposed as a way of complementing manipulative experiments to improve ecological understanding and guide management. There is a pressing need for evidence from such studies to inform a shift to landscape‐scale conservation, including the design of ecological networks. Although this shift has been widely embraced by conservation communities worldwide, the empirical evidence is limited and equivocal, and may be limiting effective conservation. We present principles for well‐designed natural experiments to inform landscape‐scale conservation and outline how they are being applied in the WrEN project, which is studying the effects of 160 years of woodland creation on biodiversity in UK landscapes. We describe the study areas and outline the systematic process used to select suitable historical woodland creation sites based on key site‐ and landscape‐scale variables – including size, age, and proximity to other woodland. We present the results of an analysis to explore variation in these variables across sites to test their suitability as a basis for a natural experiment. Our results confirm that this landscape satisfies the principles we have identified and provides an ideal study system for a long‐term, large‐scale natural experiment to explore how woodland biodiversity is affected by different site and landscape attributes. The WrEN sites are now being surveyed for a wide selection of species that are likely to respond differently to site‐ and landscape‐scale attributes and at different spatial and temporal scales. The results from WrEN will help develop detailed recommendations to guide landscape‐scale conservation, including the design of ecological networks. We also believe that the approach presented demonstrates the wider utility of well‐designed natural experiments to improve our understanding of ecological systems and inform policy and practice.  相似文献   

17.
1. Aquatic ecologists use mesocosm experiments to understand mechanisms driving ecological processes. Comparisons across experiments, and extrapolations to larger scales, are complicated by the use of mesocosms with varying dimensions. We conducted a mesocosm experiment over a volumetric scale spanning five orders of magnitude (from 4 L to whole ponds) to determine the generality of algal responses to nutrient enrichment. Recognising that mesocosm dimensions may affect algal growth, we also manipulated the ratio of mesocosm surface area to volume (SA : V) over two levels (high versus low). We used mesocosm tanks of similar size and construction to those commonly used in aquatic experiments to increase the generality of our results. 2. Volume was generally a stronger determinant of algal responses than mesocosm shape (i.e. SA : V). However, the effects of both volume and shape on algae were weak and explained a small portion of the variance in response variables. In addition, there was no consistent, directional relationship (positive or neutral) between mesocosm volume and algal abundance (estimated by chlorophyll concentration). Combined, our findings suggest that results from small‐scale experiments, examining the direct response of algae to nutrient enrichment, can probably be ‘moved on up’ and applied to larger, more natural aquatic systems. 3. Algal response to nutrient enrichment (e.g. nutrient use efficiency and effect size) varied strongly with time. This underscores the importance of choosing an experimental timescale appropriate to the biological and/or ecological process of interest. 4. We compared our results to those from a recent meta‐analysis of nutrient‐limitation studies that included 359 freshwater pelagic experiments, spanning a wide range of volumetric and temporal scales. Similar findings between this experiment and the meta‐analysis indicate that algal response to nutrient enrichment varies little across spatial scales. Therefore, it is probable that results from small‐scale pelagic algal nutrient‐limitation experiments are relevant to large‐scale processes, such as eutrophication.  相似文献   

18.
19.
韩善锐  韦胜  周文  张明娟  陶婷婷  邱廉  刘茂松  徐驰 《生态学报》2017,37(16):5305-5312
地图用户兴趣点(POI)数据能够反映微观尺度上城市系统中的人类活动。利用2015年夏季Landsat 8遥感影像提取了南京市地表温度和主要土地覆盖类型,利用空间与非空间多元回归模型在2、5、10 km 3个尺度上研究了地表温度与同期POI密度及植被和水体盖度的相关性,并利用方差分解技术定量区分人类活动因子(POI密度)及生态基础设施(植被和水体盖度)对城市热场的相对重要性。结果表明,在3个观测尺度上,POI密度与地表温度均存在极显著的正相关(P0.001),且相关性随观测尺度的增大而升高。植被和水体均具有显著的降温效应,水体盖度与地表温度的相关性仅在2 km尺度上显著,在5 km和10km尺度上其降温效应不再显著。方差分解结果表明,人类活动因子和生态基础设施对地表温度的独立解释率为1.6%—15%,而二者共同解释率达到了40%—70%。研究表明POI作为城市功能节点可以综合反映城市中人类活动的热源强度,在城市热场空间格局研究中是一种可与遥感数据互补的有用数据源。  相似文献   

20.
A hierarchical approach to restoration planning at the regional, catchment and local scales is proposed and examined. Restoration projects limited to a local scale and focused on habitat improvement for individual species ended in failure, which has led to the recognition that there is a need for ecosystem-based management at the landscape level. The first landscape-level restoration in Japan is under way in the Kushiro and Shibetsu River Basins, in northern Japan. However, public consensus on these large-scale restoration projects has not yet matured and there are very few projects that have progressed even as far as mapping to classify intact and disturbed ecosystems. Classification of habitat quality using physical and biological indicators appears to be the core element of analysis of ecological degradation at the regional scale (100–1,000 km2). This mass-screening process is critical to identify areas in potential need of restoration. The causes and mechanisms of ecosystem degradation are then examined at the catchment scale (10–100 km2) by linking material flows and habitat conditions. Direct environmental gradient analysis is useful to determine cause and effect relationships between species and habitat quality. Finally, we recommend implementation of field experiments with a clear hypothesis at the local scale (0.01–1 km2). At this stage, key variables causing degradation of the target ecosystem are manipulated to verify the hypothesis. Based on the results of local-scale analyses, the possibility of restoration success can be evaluated, which directs us to practical schemes for future restoration projects at larger scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号