首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The European pond turtle (Emys orbicularis) is a Nearctic element in the African fauna and thought to have invaded North Africa from the Iberian Peninsula. All North African populations are currently identified with the subspecies E. o. occidentalis. However, a nearly range-wide sampling in North Africa used for analyses of mitochondrial and microsatellite DNA provides evidence that only Moroccan populations belong to this taxon, while eastern Algerian and Tunisian pond turtles represent an undescribed distinct subspecies. These two taxa are most closely related to E. o. galloitalica with a native distribution along the Mediterranean coast of northern Spain through southern France to western and southern Italy. This group is sister to a clade comprising several mitochondrial lineages and subspecies of E. orbicularis from Central and Eastern Europe plus Asia, and the successive sisters are E. o. hellenica and E. trinacris. Our results suggest that E. orbicularis has been present in North Africa longer than on the Iberian Peninsula and that after an initial invasion of North Africa by pond turtles from an unknown European source region, there was a phase of diversification in North Africa, followed by a later re-invasion of Europe by one of the African lineages. The differentiation of pond turtles in North Africa parallels a general phylogeographic paradigm in amphibians and reptiles, with deeply divergent lineages in the western and eastern Maghreb. Acknowledging their genetic similarity, we propose to synonymize the previously recognized Iberian subspecies E. o. fritzjuergenobsti with E. o. occidentalis sensu stricto. The seriously imperiled Moroccan populations of E. o. occidentalis represent two Management Units different in mitochondrial haplotypes and microsatellite markers. The conservation status of eastern Algerian pond turtles is unclear, while Tunisian populations are endangered. Considering that Algerian and Tunisian pond turtles represent an endemic taxon, their situation throughout the historical range should be surveyed to establish a basis for conservation measures.  相似文献   

2.
Forty‐five unmanaged honeybee colonies from the south‐east of the Iberian Peninsula (Apis mellifera iberica) were selected for analysing their genetic structure using eight microsatellite loci. These colonies were not subjected to management for queen replacement, rearing or migratory movements and previous studies showed that they had mitochondrial DNA (mtDNA) of African origin. Six of the microsatellite loci show intermediate levels of polymorphism with a total number of alleles detected per locus ranging from 4 to 10. Microsatellite data relate these Iberian populations to the African A. m. intermissa, although the presence of some alleles and the observed heterozygosity are characteristic of the European A. m. mellifera, thus corroborating the postulated hybrid origin of A. m. iberica. The results suggest that no recent introgression from Africa has happened and that the populations of A. m. iberica are differentiated in many demes.  相似文献   

3.
An extensive survey of mitochondrial haplotypes in honeybee colonies from the Iberian Peninsula has corroborated previous hypotheses about the existence of a joint clinal variation of African (A) and west European (M) evolutionary lineages. It has been found that the Iberian Peninsula is the European region with the highest haplotype diversity (12 haplotypes detected of the M lineage and 10 of the A lineage). The frequency of A haplotypes decreases in a SW-NE trend, while that of M haplotypes increases. These results are discussed in relation to hypotheses about the African origin of Apis mellifera and an early colonization of west Europe during intermediate Pleistocene glaciation events, followed by a regional differentiation. The extant pattern of haplotype frequency and distribution seems to be influenced at a regional scale by adaptation to local climatic conditions and the mobile beekeeping that has become a large-scale practice during the last decades. Other previous anthropogenic influences (Greek, Roman and Arab colonizations) are thought to be of minor importance in present day populations.  相似文献   

4.
Native red deer (Cervus elaphus) in Western Europe might at least partially derive from refugial populations which survived in the Iberian Peninsula during the last glacial maximum, and that expanded northwards at the onset of the Holocene. However, the phylogeny and genetic structure of red deer populations in the Iberian Peninsula are still poorly known. This study was planned, in a first step, to reconstruct the phylogenetic relationship of the main red deer populations extant in Spain by the analyses of an extensive sample of mitochondrial DNA sequences. Results indicate that sequences from these populations can be assigned to one of two deeply divergent mtDNA lineages (South-Western and Central-Eastern) with molecular divergence nearby the 2 %. In each lineage were respectively found sixteen and thirteen different haplotypes. It was evidenced that they may be allopatrically distributed in Spain with 86.6 % sequences of the South-Western lineage at the South-Western side and the 65 % sequences of Central-Eastern lineage in the Central-Eastern side. These mitochondrial lineages might have originated in two distinct refugial populations during the last glacial maximum. Genetic data also reveal instances of admixture between native populations and translocated European red deer, which belong to at least three distinct subspecies. Gene introgression was mainly due to red deer from Western European populations. The genetic contribution of red deer translocated from Eastern Europe (C. e. hippelaphus) or North Africa (C. e. corsicanus, C. e. barbarus) was apparently less deep. The extant phylogenetic relationship and evidences of genetic admixture suggest that sound conservation actions for the native Iberian red deer should severely restrict the introduction of alien red deer and, when possible, avoid admixture between the South-Western and Central-Eastern mtDNA lineages.  相似文献   

5.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin have been found at low frequency (1%, in average) in different European populations. In the present study, data on mtDNA variability in populations of Eurasia and Africa are analyzed and search of African-specific lineages present in Europeans is conducted. The results of analysis indicate that, despite a high diversity of African mtDNA haplotypes found in Europeans, monophyletic clusters of African mtDNA lineages, arisen in Europe and characterized by long-term diversity, are nearly absent in Europe. Only two respective clusters (belonging to haplogroups L1b and L3b), which evolutionary age does not exceed 6.5 thousands years, were revealed. Comparative analysis of distribution of frequencies of autosomal microsatellite alleles found in Russian individuals, carrying the African-specific mitochondrial haplotypes, in populations of Europe and Africa has indicated that autosomal genotypes of those Russian individuals are characterized by the presence of alleles characteristic mostly for Europeans.  相似文献   

6.
Mitochondrial DNA (mtDNA) variation among specimens of the northwestern African hare (Lepus capensis schlumbergeri) and three European hares sampled in Spain (L. castroviejoi andL. granatensis, which are endemic to the Iberian Peninsula, andL. europaeus) was analyzed using seven restriction endonucleases. Fourteen haplotypes were found among the 34 animals examined. Restriction site maps were constructed and the phylogeny of the haplotypes was inferred. mtDNA ofL. capensis was the most divergent, which is consistent with its allopatric African distribution and with an African origin of European hares. We estimated that mtDNA in hares diverges at a rate of 1.5–1.8% per MY assuming that the European and African populations separated 5–6 MYBP. Maximum intraspecies nucleotide divergences were 1.3% inL. capensis, 2.7% inL. castroviejoi, and 2.3% inL. granatensis but 13.0% inL. europaeus. The latter species contained two main mtDNA lineages, one on the branch leading toL. castroviejoi and the other on that leading toL. granatensis. The separation of these two lineages from theL. castroviejoi orL. granatensis lineages appears to be much older than the first paleontological record ofL. europaeus in the Iberian peninsula. This suggests that the apparent polyphyly ofL. europaeus is due not to secondary introgression, but to the retention of ancestral polymorphism inL. europaeus. The results suggest thatL. europaeus either has evolved as a very large population for a long time or has been fractionated. Such a pattern of persistence of very divergent lineages has also been reported in other species of highly mobile terrestrial mammals. As far as mtDNA is concerned,L. europaeus appears to be the common phylogenetic trunk which has diversified during dispersion over the European continent and from whichL. castroviejoi andL. granatensis speciated separately in southwest Europe.  相似文献   

7.
Mauremys leprosa, distributed in Iberia and North‐west Africa, contains two major clades of mtDNA haplotypes. Clade A occurs in Portugal, Spain and Morocco north of the Atlas Mountains. Clade B occurs south of the Atlas Mountains in Morocco and north of the Atlas Mountains in eastern Algeria and Tunisia. However, we recorded a single individual containing a clade B haplotype in Morocco from north of the Atlas Mountains. This could indicate gene flow between both clades. The phylogenetically most distinct clade A haplotypes are confined to Morocco, suggesting both clades originated in North Africa. Extensive diversity within clade A in south‐western Iberia argues for a glacial refuge located there. Other regions of the Iberian Peninsula, displaying distinctly lower haplotype diversities, were recolonized from within south‐western Iberia. Most populations in Portugal, Spain and northern Morocco contain the most common clade A haplotype, indicating dispersal from the south‐western Iberian refuge, gene flow across the Strait of Gibraltar, and reinvasion of Morocco by terrapins originating in south‐western Iberia. This hypothesis is consistent with demographic analyses, suggesting rapid clade A population increase while clade B is represented by stationary, fragmented populations. We recommend the eight, morphologically weakly diagnosable, subspecies of M. leprosa be reduced to two, reflecting major mtDNA clades: Mauremys l. leprosa (Iberian Peninsula and northern Morocco) and M. l. saharica (southern Morocco, eastern Algeria and Tunisia). Peripheral populations could play an important role in evolution of M. leprosa because we found endemic haplotypes in populations along the northern and southern range borders. Previous investigations in another western Palearctic freshwater turtle (Emys orbicularis) discovered similar differentiation of peripheral populations, and phylogeographies of Emys orbicularis and Mauremys rivulata underline the barrier status of mountain chains, in contrast to sea straits, suggesting common patterns for western Palearctic freshwater turtles.  相似文献   

8.
Mitochondrial DNA (mtDNA) nucleotide sequences of African origin are found in various European populations at a low frequency (on average, less than 1%). Data on mtDNA variation in Eurasian and African populations have been analyzed, and African mtDNA lineages have been found in Europeans. It has been demonstrated that, despite the high diversity of mtDNA haplotypes of African origin in Europeans, few monophyletic clusters of African lineages are characterized by long-term diversity formed in Europe. Only two such mtDNA clusters (from haplogroups L1b and L3b) have been found, their evolutionary age not exceeding 6500 years. European and African populations have been compared with respect to the frequency distributions of the alleles of autosomal microsatellite loci found in Russian carriers of African mtDNA haplotypes. It has been demonstrated that alleles typical of Europeans are characteristic of the autosomal genotypes of these Russian individuals.  相似文献   

9.
The ancestry of New World cattle was investigated through the analysis of mitochondrial and Y chromosome variation in Creoles from Argentina, Brazil, Mexico, Paraguay and the United States of America. Breeds that influenced the Creoles, such as Iberian native, British and Zebu, were also studied. Creoles showed high mtDNA diversity (H = 0.984 ± 0.003) with a total of 78 haplotypes, and the European T3 matriline was the most common (72.1%). The African T1a haplogroup was detected (14.6%), as well as the ancestral African‐derived AA matriline (11.9%), which was absent in the Iberian breeds. Genetic proximity among Creoles, Iberian and Atlantic Islands breeds was inferred through their sharing of mtDNA haplotypes. Y‐haplotype diversity in Creoles was high (H = 0.779 ± 0.019), with several Y1, Y2 and Y3 haplotypes represented. Iberian patrilines in Creoles were more difficult to infer and were reflected by the presence of H3Y1 and H6Y2. Y‐haplotypes confirmed crossbreeding with British cattle, mainly of Hereford with Pampa Chaqueño and Texas Longhorn. Male‐mediated Bos indicus introgression into Creoles was found in all populations, except Argentino1 (herd book registered) and Pampa Chaqueño. The detection of the distinct H22Y3 patriline with the INRA189‐90 allele in Caracú suggests introduction of bulls directly from West Africa. Further studies of Spanish and African breeds are necessary to elucidate the origins of Creole cattle, and determine the exact source of their African lineages.  相似文献   

10.
Mitochondrial DNA analysis of 13 populations of S. salamandra along a transect across the North of the Iberian Peninsula showed values of divergence between haplotypes ranging from d = 0.41% to 5.91%. Phenetic and cladistic analysis grouped the isofemale lineages into two main clusters with contrasting phylogeographic patterns. The first group encompasses populations located at each extreme of the Iberian Peninsula. Despite the large geographic distance separating these populations, they exhibit only a minor degree of divergence among haplotypes. In contrast, much higher diversification, in both number of distinct haplotypes, and overall genetic divergence, was observed in the second group of phylogenetically related populations. Surprisingly, this process of radiation and divergence in mtDNA haplotypes occurred in populations in close geographic proximity. All populations sampled in this group are located within a 300 km range, in the central part of our transect across the Northern edge of the Peninsula. Most populations in the central range of our transect exhibit viviparous reproduction — which is derived and highly unusual among urodeles. The genetic distances measured among Asturian (central portion of our transect), viviparous populations are higher than the distances measured between the two main taxonomic clusters. A viviparous population showing an unusual level of mtDNA heterogenetiy is reported and the potential implications of this focus of localized variability are discussed. The dynamics of isofemale lineages among the two reproductive modes was further explored in combination with the previous allozyme data. Several nuclear markers suggest that major mtDNA divergences could be explained by long-term extrinsic barriers to gene flow. Isofemale lineages indicate a narrow secondary contact zone among populations with different reproductive patterns. The existence of viviparous and ovovivparous populations sharing a common haplotype suggests that reproductive transition in S. salamandra could have arisen in absence of genetic mtDNA differentiation. We finally outline a genetic model system where the acquisition of water independence from a primitively aquatic dependent amphibian life cycle can be analyzed from a microevolutionary perspective.  相似文献   

11.
South American Creole cattle are direct descendants of the animals brought to the New World by the Spanish and Portuguese during the 16th century. A portion of the mitochondrial D-loop was sequenced in 36 animals from five Creole cattle populations in Argentina and four in Bolivia. Individuals belonging to the potentially ancestral Spanish breed Retinta were also analysed. Sequence comparisons revealed three main groups: two with the characteristics of European breeds and a third showing the transitions representative of the African taurine breeds. The African sequences were found in two populations from Argentina and three populations from Bolivia, whose only connections go back to colonial times. The most probable explanation for the finding is that animals could have been moved from Africa to Spain during the long-lasting Arabian occupation that started in the seventh century, and from the Iberian Peninsula to America eight centuries later. However, since African haplotypes were not found in the Spanish sample, the possibility of cattle transported directly from Africa cannot be disregarded.  相似文献   

12.
We investigated the phylogenetic relationships among the three presently recognized subspecies of the tadpole shrimp, Triops cancriformis , using mitochondrial 16S and 12S rDNA sequences. Our results indicate that the taxon is divided into two distinct lineages. One lineage is formed of T. c. cancriformis populations and samples from northern Spain that had been classified as T. c. simplex in the most recent literature. The second lineage comprises all populations of T. c. mauritanicus and northern African populations of T. c. simplex . These two main lineages separated 2.3 to 8.9 million years ago, based on the range of inferred molecular clocks recognized for crustacean mtDNA sequence divergence. Percentages of divergence are in the range reported for recognized species in other notostracan lineages and we therefore propose to recognize them as two species, Triops cancriformis and Triops mauritanicus . The latter would comprise two subspecies in northern Africa, one consisting of the Moroccan populations of the former T. c. mauritanicus , the other comprising the African populations of the former T. c. simplex . It also includes three as-yet unnamed lineages. A comparison of morphological characters with the molecular data revealed that the former T. c. simplex cannot be reliably separated from T. c. cancriformis , using morphological characters that have hitherto been used to distinguish among subspecies of T. cancriformis . Our investigation is the first to demonstrate the presence of T. c. cancriformis in Africa (Tunisia). The genetic haplotypes of these populations are identical with haplotypes also occurring in Central and Western Europe, as well as in Sicily. Therefore, we hypothesize that the African populations of T. c. cancriformis represent a result of repeated long-distance dispersal across the Mediterranean Sea.  相似文献   

13.
Abstract.—Mytilus edulis and M. galloprovincialis are two blue mussel species that coexist in western Europe. Previously, we reported that M. galloprovincialis populations contain female and male haplotypes that are fixed in M. edulis populations as well as unique haplotypes. This study assesses whether paraphyly for these species is due to introgression or incomplete lineage extinction. The lineage extinction hypothesis predicts that the shared mtDNA haplotypes in M. galloprovincialis will be significantly diverged from those in M. edulis and form distinct sequence clades. In contrast, the introgression hypothesis proposes that M. edulis haplotypes have only recently been introduced into M. galloprovincialis through hybridization with relatively little divergence accumulating between the shared RFLP haplotypes. We examined 80 mtl6S gene sequences for both the maternal and paternal mtDNA lineages from mussels sampled from various European populations and found strong support for the introgression hypothesis. In addition, we found that M. edulis mtDNA haplotypes appear to be introgressing into mussel populations in the Baltic Sea, which have predominantly M. trossulus nuclear genotypes, indicating that introgressive hybridization is prevalent among European mussel populations.  相似文献   

14.
Determining the timing, identity and direction of migrations in the Mediterranean Basin, the role of “migratory routes” in and among regions of Africa, Europe and Asia, and the effects of sex-specific behaviors of population movements have important implications for our understanding of the present human genetic diversity. A crucial component of the Mediterranean world is its westernmost region. Clear features of transcontinental ancient contacts between North African and Iberian populations surrounding the maritime region of Gibraltar Strait have been identified from archeological data. The attempt to discern origin and dates of migration between close geographically related regions has been a challenge in the field of uniparental-based population genetics. Mitochondrial DNA (mtDNA) studies have been focused on surveying the H1, H3 and V lineages when trying to ascertain north-south migrations, and U6 and L in the opposite direction, assuming that those lineages are good proxies for the ancestry of each side of the Mediterranean. To this end, in the present work we have screened entire mtDNA sequences belonging to U6, M1 and L haplogroups in Andalusians—from Huelva and Granada provinces—and Moroccan Berbers. We present here pioneer data and interpretations on the role of NW Africa and the Iberian Peninsula regarding the time of origin, number of founders and expansion directions of these specific markers. The estimated entrance of the North African U6 lineages into Iberia at 10 ky correlates well with other L African clades, indicating that U6 and some L lineages moved together from Africa to Iberia in the Early Holocene. Still, founder analysis highlights that the high sharing of lineages between North Africa and Iberia results from a complex process continued through time, impairing simplistic interpretations. In particular, our work supports the existence of an ancient, frequently denied, bridge connecting the Maghreb and Andalusia.  相似文献   

15.
Variability of mitochondrial DNA (mtDNA) of the honey bee Apis mellifera L. has been investigated by restriction and sequence analyses on a sample of 68 colonies from ten different subspecies. The 19 mtDNA types detected are clustered in three major phylogenetic lineages. These clades correspond well to three groups of populations with distinct geographical distributions: branch A for African subspecies (intermissa, monticola, scutellata, andansonii and capensis), branch C for North Mediterranean subspecies (caucasica, carnica and ligustica) and branch M for the West European populations (mellifera subspecies). These results partially confirm previous hypotheses based on morphometrical and allozymic studies, the main difference concerning North African populations, now assigned to branch A instead of branch M. The pattern of spatial structuring suggests the Middle East as the centre of dispersion of the species, in accordance with the geographic areas of the other species of the same genus. Based on a conservative 2% divergence rate per Myr, the separation of the three branches has been dated at about 1 Myr BP.  相似文献   

16.
The Iberian Peninsula contains diverse populations of freshwater fish, with major river basins comprising differentiated biogeographic units. The Duero River flows through the North‐Western Iberian Peninsula and is one of the most important rivers within the Iberian glacial refuge. Brown trout (Salmo trutta) populate this whole basin, and studies using both allozyme and microsatellite loci have detected a geographically sorted distribution of genetic variation in this species. In this work, sequences of the mitochondrial control region obtained from 299 brown trout from the Duero River were compared with other Iberian and European datasets. Two differentiated haplotype groups were detected inside the Duero River basin. One of them was related to the Atlantic (AT) lineage that is present in Northern European populations, whereas the other comprised an unique group that was restricted to the inner region of the basin. The amount of divergence of this Duero group from the other brown trout populations studied is consistent with a new trout lineage (Duero, DU) that is endemic to this river basin and that diverged from other Atlantic populations during the Pleistocene. The distribution of the DU and AT quaternary lineages in the Duero River was consistent with the ichthyological pattern described in the basin that originated during the Miocene–Pliocene. Evidence of selective processes that favour the haplotypes of the DU lineage may explain this discrepancy.  相似文献   

17.
The European pond turtle (Emys orbicularis) is threatened and in decline in several regions of its natural range, due to habitat loss combined with population fragmentation. In this work, we have focused our efforts on studying the genetic diversity and structure of Iberian populations with a fine-scale sampling (254 turtles in 10 populations) and a representation from North Africa and Balearic island populations. Using both nuclear and mitochondrial markers (seven microsatellites, ∼1048 bp nDNA and ∼1500 bp mtDNA) we have carried out phylogenetic and demographic analyses. Our results show low values of genetic diversity at the mitochondrial level although our microsatellite dataset revealed relatively high levels of genetic variability with a latitudinal genetic trend decreasing from southern to northern populations. A moderate degree of genetic differentiation was estimated for Iberian populations (genetic distances, F ST values and clusters in the Bayesian analysis). The results in this study combining mtDNA and nDNA, provide the most comprehensive population genetic data for E. orbicularis in the Iberian Peninsula. Our results suggest that Iberian populations within the Iberian–Moroccan lineage should be considered as a single subspecies with five management units, and emphasize the importance of habitat management rather than population reinforcement (i.e. captive breeding and reintroduction) in this long-lived species.  相似文献   

18.
The genetic variability of honeybee populations Apis mellifera ligustica, in continental Italy, and of A. m. sicula, in Sicily, was investigated using nuclear (microsatellite) and mitochondrial markers. Six populations (236 individual bees) and 17 populations (664 colonies) were, respectively, analysed using eight microsatellite loci and DraI restriction fragment length polymorphism (RFLP) of the cytochrome oxidase I (COI)-cytochrome oxidase II (COII) region. Microsatellite loci globally confirmed the southeastern European heritage of both subspecies (evolutionary branch C). However, A. m. ligustica mitochondrial DNA (mtDNA) appeared to be a composite of the two European (M and C) lineages over most of the Italian peninsula, and only mitotypes from the African (A) lineage were found in A. m. sicula samples. This demonstrates a hybrid origin for both subspecies. For A. m. ligustica, the most widely exported subspecies, this hybrid origin has long been obscured by the fact that in the main area of queen production (from which most of the previous ligustica bee samples originated) the M mitochondrial lineage is absent, whereas it is present almost everywhere else in Italy. This presents a new view of the evolutionary history of European honeybees. For instance, the Iberian peninsula was considered as the unique refuge for the M branch during the quaternary ice periods. Our results show that the Apennine peninsula played a similar role. The differential distribution of nuclear and mitochondrial markers observed in Italy seems to be a general feature of introgressed honeybee populations. Presumably, it stems from the social nature of the species in which both genome compartments are differentially affected by the two (individual and colonial) reproduction levels.  相似文献   

19.
Today's European sturgeons are relics of erstwhile widely distributed populations, diminished mainly by overfishing and habitat changes over the centuries. While extinct European populations in the Baltic and North seas have been identified as Acipenser oxyrhinchus or A. sturio , a clear species determination on the Iberian Peninsula is still lacking. Plans to conserve existing populations and to re-introduce extinct wild populations in European rivers will benefit from information of historic population/genotype composition. In this study, we used techniques involving ancient DNA as well as morphological comparisons based on bony scutes to identify twelve samples from five archaeological sites (650 bc –1500 ad , one sample dated 10.1–11.8 ky) on the Iberian Peninsula. All amplified PCR products of bony scutes (n = 5) had the mitochondrial DNA haplotypes of European sturgeon. Neither mitochondrial haplotypes of A. naccarii nor mitochondrial haplotypes of A. oxyrinchus were found.  相似文献   

20.
Baboons (Mammalia: Primates, Papio) are found primarily on the continent of Africa, but the range of hamadryas baboons (Papio hamadryas) extends to the Arabian Peninsula, and the origin of Arabian populations is unclear. To estimate the timing of the divergence between Arabian and African hamadryas populations we analyzed mitochondrial DNA (mtDNA) sequences from individuals of Arabian and African origin, and from representatives of the other major baboon taxa. The oldest hamadryas mitochondrial lineages in the Arabian Peninsula form an ancient trichotomy with the two major African lineages. This suggests that Arabia was colonized by hamadryas very soon after the appearance of the distinctive hamadryas phenotype, both events perhaps coinciding with a mid-Pleistocene stage of dry climate and low sea-level. The most closely related Arabian and African mtDNA haplotypes coalesce at approximately 35 ka, suggesting that no gene flow between African and Arabian baboons has occurred since the end of the last ice age, when a land bridge at the southern sill of the Red Sea was submerged. The mitochondrial paraphyly of Ethiopian hamadryas and anubis (P. anubis) baboons suggests an extensive and complex history of sex-specific introgression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号