首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The investigation of the activity of extracellular hydrolytic enzymes and sporulation in the bacterium Bacillus intermedius 3-19 showed that the activity of ribonuclease is maximal in the glucose-containing growth medium, in which sporulation is suppressed. At the sporulation stages II–IV, the synthesis of phosphatase was not regulated by the factors that influence this synthesis in the phase of growth retardation. Caseinolytic activity exhibited two peaks. The first peak was observed when thiol-dependent proteinase began accumulating in the medium. The second peak corresponded to the late stages of sporulation, i.e., the stages of spore maturation and the autolysis of sporangium. The regulatory relationship between proteinase synthesis and sporulation and the possible role of extracellular phosphatases and proteinases in the sporulation are discussed.  相似文献   

2.
The amino acid requirements for sporulation were studied by use of auxotrophic mutants of Bacillus subtilis 168. Cells were grown to T(0) in medium containing the test amino acid and were then transferred to a minimal medium lacking that amino acid. Omission of leucine caused no reduction in sporulation. Omission of methionine, lysine, and phenylalanine appeared to cause reduced levels of sporulation, and sporulation was completely inhibited when isoleucine, tryptophan, and threonine were omitted. The amino acids in this third class showed a sequence of requirements, with tryptophan required earlier than isoleucine, which in turn was required earlier in the sporulation process than threonine. Isoleucine omission did not affect the early sporulation functions of extracellular protease formation or septum formation, but prevented the increased levels of protein synthesis and oxygen consumption that normally accompany early sporulation stages. Isoleucine did not appear to be metabolized to other compounds in significant amounts during sporulation. The role of isoleucine in the sporulation process remains unclear.  相似文献   

3.
The role of the diamine putrescine during germination and outgrowth of ascospores of Saccharomyces cerevisiae was examined. Ornithine decarboxylase activity increased and declined rapidly during germination and outgrowth; peak activity was attained after the cells had proceeded through the G1 interval of the cell cycle, whereas minimal activity was present at the completion of the first cell division. alpha-Methylornithine inhibited both ornithine decarboxylase activity and the in vivo accumulation of putrescine. In the presence of alpha-methylornithireak dormancy and proceed through one cell division. Subsequent cellular growth, however, was retarded but not completely inhibited. The supplementation of Methylglyoxal bis(guanylhydrazone) to sporulation medium greatly inhibited this sexual process. These data suggest that the synthesis of putrescine is not required for the breaking of spore dormancy, but that polyamine biosynthesis may be essential for meiosis and sporulation.  相似文献   

4.
The sporulation potential of Bacillus subtilis as a function of position in the cell cycle was determined by transferring cells from growth medium to sporulation medium at various times during growth. Growth was induced by incubating heat-activated spores in rich medium or by diluting stationary phase vegetative cultures with fresh growth medium. The results supported earlier observations that sporulation potential is cell cycle dependent. The rise in sporulation potential was studied by exposing cultures to the inhibitors of cell wall and protein synthesis, vancomycin and chloramphenicol. The delay in the appearance of the peak of sporulation potential caused by these inhibitors compared with the reported lack of effect of nalidixic acid, indicates that the appearance of sporulation potential requires synthesis of a macromolecular component other than deoxyribonucleic acid. The effect of nalidixic acid in preventing the decline of the sporulation potential was compared with the effect of high temperature on a mutant temperature sensitive for the initiation of DNA replication. It was found that prevention of chromosome completion with nalidixic acid maintained a high sporulation potential, whereas prevention of chromosome re-initiation in the temperature sensitive mutant did not affect the decline in sporulation potential as the cells enter stationary phase.Abbreviations NAL Nalidixic acid - HPUra 6-(p-hydroxyphenylazo)-uracil - VAN Vancomycin - CAM Chloramphenicol - BHI Brain heart infusion broth - c.f.u. Colony forming units  相似文献   

5.
The effect of glucose and other sugars on sporulation and extracellular amylase production byClostridium perfringens NCTC 8679 type A in a defined medium was studied. Cells grown in the presence of glucose and mannose yielded the highest levels of amylase activity, while disaccharides such as lactose, maltose, and sucrose resulted in moderate amylase production. Little amylase activity was detected in the medium in the presence of ribose or galactose. The concentration of each sugar resulting in highest amylase production was between 6 and 10mm except for fructose (25mm). Levels of heat-resistant spores decreased as sugar concentrations increased. The addition of even small amounts of glucose to the medium before exponential growth suppressed sporulation but maximized amylase activity. The addition of glucose after the initiation of sporulation did not inhibit spore formation. However, its addition to 3-h amylase-producing cells did inhibit subsequent sporulation but promoted the continued excretion of amylase. The different response to glucose between sporulating cells and amylase-producing cells suggests that the mechanisms of catabolite repression of extracellular amylase production and sporulation are distinct in this strain ofC. perfringens.  相似文献   

6.
A general pattern of metabolism was determined for Bacillus thuringiensis grown in a glucose-yeast extract-salts medium. The pattern did not differ significantly from that of B. cereus grown in a similar medium. Acetic acid produced from glucose during exponential growth was further catabolized in the early sporulation phase of growth, at which time the specific activity of aconitate hydratase increased markedly. Fluoroacetate and alpha-picolinate prevented the removal of accumulated acid, and the resulting low pH inhibited spore and crystal synthesis. Neither crystal-related antigens nor insect toxicity was shown by cells whose crystal synthesis was inhibited in this way. alpha-Picolinate prevented the normal increase in specific activity of aconitate hydratase without inhibiting exponential growth. It also inhibited aconitate hydratase in vitro, but only if preincubated with the enzyme. alpha-Picolinate did not inhibit the increase in specific activity of aconitate hydratase or spore and crystal synthesis in a medium buffered near neutrality. Chloramphenicol and actinomycin D inhibited crystal enlargement and sporulation when added to cells in which small crystals had already begun to form. Typical messenger ribonucleic acid-dependent protein synthesis, rather than the type associated with peptide antibiotic synthesis, is thus indicated for the synthesis of crystal peptide subunits.  相似文献   

7.
Abstract Netropsin stimulated the rate of synthesis of an extracellular metalloproteinase in Bacillus megaterium incubated in a sporulation medium. The antibiotic delayed but did not suppress the decrease in the ability to synthesize the proteinase occurring at later sporulation stages. Netropsin also stimulated the synthesis of the proteinase when added to a growing culture; it inhibited the increase of protein turnover which was switched on between the 2nd and 3rd hour in the sporulating population. No refractile spores were developed during 6 h at 35°C in the antibiotic-treated culture. In the control 60% of sporulating cells were observed under similar conditions.  相似文献   

8.
During meiosis and spore formulation in Saccharomyces cerevisiae, changes that occur in a/alpha diploids, but not in isogenic nonsporulating a/a diploids, have been detected in cellular polypeptides. These were found by the technique of prelabeling growing cells with 35SO4(2-) and suspending them in sulfur-free sporulation medium. Under the conditions used, about 400 polypeptides were detected by two-dimensional gel electrophoresis, and 45 were altered during sporulation; of these, 21 changes were specific to a/alpha strains. These alterations were mainly due to the appearance of new polypeptides or to marked increases in the concentrations of a few polypeptides produced during vegetative growth. They could have been due either to modifications of existing polypeptides present in growing cells or to de novo synthesis of new gene products. They occurred at characteristic times during sporulation; whereas the majority of changes took place early (within the first 6 h in sporulation conditions), there were several changes characterizing the later stages of sporulation. Ten of the 35SO4(2-)-labeled polypeptides were also labeled with 32P in the presence of [32P]orthophosphate; of these, three were previously found to be sporulation specific. One of these was phosphorylated at all stages of sporulation and was labeled when [32P]orthophosphate was added either during growth of the culture of 1 h after transfer to sporulation medium. Another was labeled in the same way by adding 32P at either time, so that by 7 h in sporulation medium it was phosphorylated, but was dephosphorylated by 24 h. The third sporulation-specific peptide was labeled in extracts prepared at 7 h in sporulation medium (but not at 24 h) when [32P]-orthophosphate was added during presporulation growth, but not when [32P]-orthophosphate was added 1 h after transfer of the culture to sporulation medium. This polypeptide appeared early during sporulation; it is probably phosphorylated as it appears and is dephosphorylated at some time between 7 h and 24 h of sporulation.  相似文献   

9.
Bacillus subtilis Marburg was found to produce an appreciable amount of an antibiotic in a synthetic medium. Antibiotic activity was produced in parallel with cell growth, and production stopped at the end of exponential growth. When the synthetic medium was supplemented with a small amount of Casamino acids, however, antibiotic was made only at the end of growth and in lesser amounts. The ability of cells to produce the antibiotic increased when stringent (rel+ = wild-type) cells underwent a partial stringent response. These conditions also initiated extensive sporulation. An isogenic relaxed (rel) strain produced little antibiotic activity, which decreased under partial amino acid deprivation. In rel+ cells, the addition of a low concentration of chloramphenicol, which reduces ppGpp synthesis, also reduced antibiotic synthesis in both normal and amino acid-starved bacteria, without appreciably affecting their growth rate. Guanosine starvation of a gua mutant initiated sporulation, but decreased antibiotic production. The results show that the stringent response initiates both sporulation (differentiation) and antibiotic production (secondary metabolism), but by different mechanisms. It appears that sporulation results from a decrease of GTP, whereas antibiotic synthesis results from a different effect of the stringent response.  相似文献   

10.
The growth of the recombinant Bacillus subtilis strain AJ73 carrying the Bacillus intermedius 3-19 glutamyl endopeptidase gene on a multicopy plasmid and the effect of some nutrients on the efficiency of extracellular glutamyl endopeptidase production in the stationary growth phase were studied. In this phase, the concentration of glutamyl endopeptidase in the culture liquid peaked at the 48th and 78th h of cultivation and depended on the composition of the cultivation medium. Unlike the synthesis of glutamyl endopeptidase in the trophophase (i.e., during vegetative growth), which was suppressed by glucose, the synthesis of this enzyme during sporulation was resistant to glucose present in the cultivation medium. A multifactorial experimental design allowed optimal proportions between the concentrations of major nutrients (peptone and inorganic phosphate) to be determined. Inorganic phosphate and ammonium ions augmented the production of glutamyl endopeptidase by 30-150%, and complex organic substrates, such as casein and gelatin, enhanced the production of glutamyl endopeptidase by 50-100%. During sporulation, the production of glutamyl endopeptidase was stimulated by some bivalent cations (Ca2+, Mg2+, and Co2+) and inhibited by others (Zn2+, Fe2+, and Cu2+). The inference is drawn that the regulatory mechanisms of glutamyl endopeptidase synthesis during vegetative growth and sporulation are different.  相似文献   

11.
When sporulation is initiated by nutrient limitation, e.g., at the end of growth, certain biochemical processes occur in sequence. To determine which of these processes occur, even when the cells sporulate in the presence of a rapidly metabolizable carbon source, we induced sporulation of Bacillus subtilis by deprivation of guanine nucleotides, in a synthetic medium containing excess glucose, ammonium ions, and phosphate. The deprivation was produced either by decoyinine addition to a standard strain or by guanosin limitation of a guanine auxotroph. At 1 h after the onset of this deprivation, an extensive turnover of proteins began whose appearance was chloramphenicol sensitive. At least one enzyme (aspartate transcarbamylase) lost 70% of its activity within 15 min, indicating its rapid destruction. Whereas the magnitude of the above two changes was similar to that observed during sporulation at the end of growth in nutrient sporulation medium, protease (intracellular and extracellular) increased to less than one-tenth of the specific activity in nutrient sporulation medium, and alkaline phosphatase increased to less than one-half. However, glucose dehydrogenase, an enzyme made only in forespores, increased to the same specific activity under both conditions, presumably because the forespore compartment is protected from media (e.g., glucose) influences by the double membrane (two bilayers with opposite polarity).  相似文献   

12.
Amino acids added to a population ofBacillus megaterium immediately after its transfer to a sporulation medium stimulated growth, delayed sporulation by 1 h, and delayed the development of intracellular cytoplasmic serine proteinase (ISP) activity. However, the ISP activity in late sporulation stages exceeded twice that of the control population. Amino acids supplemented at T3, i.e., at the time when engulfed forespores were developing, caused a decrease of specific ISP activity. The course of the phenylmethane sulfonyl fluoride (PMSF)-resistant activity in the cytoplasm was not affected by amino acids. Intracellular degradation of proteins prelabeled at the end of the growth phase was decreased by amino acids during the reversible sporulation phase but was only slightly affected later.  相似文献   

13.
Zhang H  Wang H  Wang Y  Cui H  Xie Z  Pu Y  Pei S  Li F  Qin S 《FEMS microbiology letters》2012,330(2):105-112
Bacillus sphaericus has been used with great success in mosquito control programs worldwide. Under conditions of nutrient limitation, it undergoes sporulation via a series of well defined morphological stages. However, only a small number of genes involved in sporulation have been identified. To identify genes associated with sporulation, and to understand the relationship between sporulation and crystal protein synthesis, a random mariner-based transposon insertion mutant library of B.?sphaericus strain 2297 was constructed and seven sporulation-defective mutants were selected. Sequencing of the DNA flanking of the transposon insertion identified several genes involved in sporulation. The morphologies of mutants were determined by electron microscopy and synthesis of crystal proteins was analyzed by SDS-PAGE and Western blot. Four mutants blocked at early stages of sporulation failed to produce crystal proteins and had lower larvicidal activity. However, the other three mutants were blocked at later stages and were able to form crystal proteins, and the larvicidal activity was similar to wild type. These results indicated that crystal protein synthesis in B.?sphaericus is dependent on sporulation initiation.  相似文献   

14.
15.
Thymine-requiring mutants of Bacillus subtilis and mutants that are temperature-sensitive for initiation of chromosome replication have been used to study the relationship between sporulation and chromosome formation. The DNA synthesis that normally occurs when cells are transferred to sporulation medium is essential for spore induction. This is shown by the fact that thymine-starved cells are unable to form spores and are unable to perform even the earlier steps of sporulation, such as septum formation or synthesis of alkaline phosphatase. The nature of the medium in which the cells are growing while the DNA is being completed is also important because it determines both the shape and the position of the daughter chromosomes. If the cells are in a rich medium, the newly synthesized chromosomes are discrete and compact bodies: the cells are primed for growth, and sporulation cannot be induced by transferring them at this stage to a spore-inducing medium. If DNA synthesis was completed with the cells in a poor medium the daughter chromosomes, by the time DNA synthesis has ceased, are spread in a single filamentous band and the cells are morphologically already in stage I of sporulation.  相似文献   

16.
Cultures of Bacillus subtilis were treated during sporulation with antibiotics (bacitracin and vancomycin) that affect peptidoglycan synthesis. The cells were resistant to the effects of the antibiotics only when the drugs were added about 2 h after the beginning of sporulation. This was about 1 h later than the escape time of a temperature-sensitive sporulation mutant that is unable to complete prespore septation. Similar experiments were done with a mutant temperature sensitive for peptidoglycan synthesis. This showed an escape curve similar to that shown by the antibiotics. When sporulating cells were treated with antibiotics, they produced alkaline phosphatase earlier than normal. Enzyme production was unaffected by inhibition of deoxyribonucleic acid synthesis but was inhibited by chloramphenicol. Sporulation mutants that are unable to make alkaline phosphatase under normal conditions were able to make it in the presence of bacitracin. The alkaline phosphatase made under these conditions was under "sporulation-type" control since its synthesis was repressible by casein hydrolysate and unaffected by inorganic phosphate. When cells were treated with bacitracin in the growth medium as well as in the sporulation medium, alkaline phosphatase synthesis was at the same level as in an untreated control. A number of other antibiotics and surfactants were tested for the ability to cause premature production of the phosphatase of those tested, only taurodeoxycholate whowed this behavior. Moreover, incubation of cells with taurodeoxycholate in the growth medium as well as in the sporulation medium prevented premature enzyme production.  相似文献   

17.
18.
Cell-bound alkaline phosphatase ofBacillus cereus was produced during vegetative growth and sporulation in a complex medium. Addition of glucose repressed the sporulation process and the amount of enzyme synthesized increased. The time course of alkaline phosphatase production is very similar in both sporulating and non-sporulating cells. Irrespective of sporulation, alkaline phosphatase level shows a peak of activity in the exponential phase, and another in the stationary phase of growth. This preliminary data indicates differences betweenB. cereus, andB. subtilis in alkaline phosphatase characteristics.  相似文献   

19.
Alkaline phosphatase, an enzyme secreted by Bacillus intermedius S3-19 cells to the medium, was also detected in the cell wall, membrane, and cytoplasm. The relative content of alkaline phosphatase in these cell compartments depended on the culture age and cultivation medium. The vegetative growth of B. intermedius on 0.3% lactate was characterized by increased activity of extracellular and membrane-bound phosphatases. The increase in lactate concentration to 3% did not affect the activity of membrane-bound phosphatase but led to a decrease in the activity of the extracellular enzyme. Na2HPO4 at a concentration of 0.01% diminished the activity of membrane-bound and extracellular phosphatases. CoCl2 at a concentration of 0.1 mM released membrane-bound phosphatase into the medium. By the onset of sporulation, phosphatase was predominantly localized in the medium and in the cell wall. As is evident from zymograms, the multiple molecular forms of phosphatase varied depending on its cellular localization and growth phase.  相似文献   

20.
Repression of sporulation in Bacillus subtilis by L-malate.   总被引:6,自引:3,他引:3       下载免费PDF全文
L-Malate repressed sporulation in the wild-type strain of Bacillus subtilis. When 75 mM L-malate was added to the growth medium at the time of inoculation, the appearance of heat-resistant spores was delayed 6 to 8 h. The synthesis of extracellular serine protease, alkaline phosphatase, glucose dehydrogenase, and dipicolinic acid was similarly delayed. Sporulation was not repressed when malate was added to the culture at t4 or later. A mutant was selected for ability to sporulate in the presence of malate. This strain could also sporulate in the presence of glucose. The malate-resistant mutant grew poorly with malate as sole carbon source, although it possessed an intact citric acid cycle, and it showed increased levels of malic enzyme. This indicates a defect in the metabolism of malate in the mutant. A mutant lacking malate dehydrogenase activity was also able to sporulate in the presence of malate. A model for the regulation of sporulation by malate is presented and discussed. Citric acid cycle intermediates other than malate did not affect sporulation. In contrast to previous results, sporulation of certain citric acid cycle mutants could be greatly increased or completely restored by the addition of intermediates after the enzymatic block. The results indicate that the failure of citric acid cycle mutants to sporulate can be adequately explained by lack of energy and lack of glutamate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号