共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract The degree of sexual dimorphism in a trait may be determined directly by disruptive selection, as well as by correlations with other traits under selection. We grew seeds from nine populations of the dioecious plant Silene latifolia in a common‐garden experiment to determine whether phenotypic variation and correlations existed for floral, leaf and resource allocation traits, and whether this variation had a genetic component. We also determined the traits which were sexually dimorphic, the degree of dimorphism, and whether it varied among populations. Seven traits exhibited among‐population variation and sexual dimorphism. Variation in the degree of dimorphism occurred only for two traits, suggesting that dimorphism may be evolving more slowly than trait means. Males had more, smaller flowers, shorter leaves, and allocated less of their total biomass to stems and more to leaves than females. Flower production was the most sexually dimorphic trait and was correlated with all measured traits. Most traits exhibited significant correlations between the sexes. The pattern of correlations and the degree of sexual dimorphism among traits lead us to suggest that intrasexual selection for an exaggerated floral display in males has indirectly led to sexual dimorphism in a host of other traits. 相似文献
3.
Candolin U 《Evolution; international journal of organic evolution》2004,58(8):1861-1864
Female choice and male-male competition are traditionally considered to act in concert, with male competition facilitating female choice. This situation would enforce the strength of directional selection, which could reduce genetic variation and thus the benefits of choice. Here I show that in a water boatman, Sigara falleni, the direction of selection through female choice and male competition vary among traits under laboratory conditions. The two forces were mutually enforcive in acting on body size but exerted opposing selection on a sexually selected trait, male foreleg pala size. Female choice favored large palae, whereas male competition favored smaller palae, suggesting that large palae are costly in competition. This conflicting selection through female choice and male competition could be one of the forces that contribute to the maintenance of genetic variation in sexually selected traits. 相似文献
4.
Because homologous traits of males and females are likely to have a common genetic basis, sex-specific selection (often resulting from sexual selection on one sex) may generate an evolutionary tug-of-war known as intralocus sexual conflict, which will constrain the adaptive divergence of the sexes. Theory suggests that intralocus sexual conflict can be mitigated through reduction of the intersexual genetic correlation (rMF), predicting negative covariation between rMF and sexual dimorphism. In addition, recent work showed that selection should favor reduced expression of alleles inherited from the opposite-sex parent (intersexual inheritance) in traits subject to intralocus sexual conflict. For traits under sexual selection in males, this should be manifested either in reduced maternal heritability or, when conflict is severe, in reduced heritability through the opposite-sex parent in offspring of both sexes. However, because we do not know how far these hypothesized evolutionary responses can actually proceed, the importance of intralocus sexual conflict as a long-term constraint on adaptive evolution remains unclear. In this study, we investigated the genetic architecture of sexual and nonsexual morphological traits in Prochyliza xanthostoma. The lowest rMF and greatest dimorphism were exhibited by two sexual traits (head length and antenna length) and, among all traits, the degree of sexual dimorphism was correlated negatively with rMF. Moreover, sexual traits exhibited reduced maternal heritabilities, and the most strongly dimorphic sexual trait (antenna length) was heritable only through the same-sex parent in offspring of both sexes. Our results support theory and suggest that intralocus sexual conflict can be resolved substantially by genomic adaptation. Further work is required to identify the proximate mechanisms underlying these patterns. 相似文献
5.
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep. 相似文献
6.
A precise method was used for estimating the proportion of heritable variation in two life history parameters of the yellow dung fly, whereby environmental components of variance were minimized. Significant heritable variation for body size was revealed for father to son and mother to daughter relationships. Variation in development time was not significantly heritable. There is a marked sexual dimorphism in body size in this species which is discussed in the light of the observed sex-genotype interaction in heritabilities and low genetic correlation for size between the sexes. It is suggested that opposing pressures of sexual and natural selection and/or genetic pleotropy may be responsible for the maintenance of heritable variation, and the evolution of sexual dimorphism in these two traits. 相似文献
7.
Interactions among mechanisms of sexual selection on male body size and head shape in a sexually dimorphic fly 总被引:4,自引:0,他引:4
Abstract Darwin envisaged male-male and male-female interactions as mutually supporting mechanisms of sexual selection, in which the best armed males were also the most attractive to females. Although this belief continues to predominate today, it has been challenged by sexual conflict theory, which suggests that divergence in the interests of males and females may result in conflicting sexual selection. This raises the empirical question of how multiple mechanisms of sexual selection interact to shape targeted traits. We investigated sexual selection on male morphology in the sexually dimorphic fly Prochyliza xanthostoma , using indices of male performance in male-male and male-female interactions in laboratory arenas to calculate gradients of direct, linear selection on male body size and an index of head elongation. In male-male combat, the first interaction with a new opponent selected for large body size but reduced head elongation, whereas multiple interactions with the same opponent favored large body size only. In male-female interactions, females preferred males with relatively elongated heads, but male performance of the precopulatory leap favored large body size and, possibly, reduced head elongation. In addition, the amount of sperm transferred (much of which is ingested by females) was an increasing function of both body size and head elongation. Thus, whereas both male-male and male-female interactions favored large male body size, male head shape appeared to be subject to conflicting sexual selection. We argue that conflicting sexual selection may be a common result of divergence in the interests of the sexes. 相似文献
8.
JF Schaefer DD Duvernell BR Kreiser C Champagne SR Clark M Gutierrez LK Stewart C Coleman 《Ecology and evolution》2012,2(7):1371-1381
Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments. 相似文献
9.
1 Males and females of dioecious plant species often differ in a variety of secondary characteristics, such as size, flower number and flowering time, suggesting that dioecious species have sex-specific selection histories. However, a potential source of these dimorphic traits is age differences between males and females. By sowing 3000 seeds of the dioecious perennial, Silene latifolia (Caryophyllaceae), on a single day, we were able to assess the contribution of sex differences in emergence time to the development of sexually dimorphic adult traits.
2 Females emerged before males in our experimental field population, but on average males flowered first. Age differences between males and females did not therefore cause the earlier flowering of males.
3 The consequence of the detected differences in emergence and phenology between males and females was explored by path analysis. Emergence time had a strong direct effect on flower production as well as an indirect effect through flowering time. The regression coefficient of flowering time on emergence time was significantly larger for male plants.
4 A phenotypic selection analysis revealed that seedlings emerging early suffered greater mortality than those emerging later. Seedlings emerging early, however, developed into plants with more flowers, indicating that there was a trade-off between survivorship and reproductive performance. Seeds with intermediate emergence times had the highest total fitness, indicating the presence of stabilizing selection. Despite the strong mortality selection against early emergers, we detected no shift in the sex ratio compared with the sex ratio of seeds matured under low-mortality greenhouse conditions. 相似文献
2 Females emerged before males in our experimental field population, but on average males flowered first. Age differences between males and females did not therefore cause the earlier flowering of males.
3 The consequence of the detected differences in emergence and phenology between males and females was explored by path analysis. Emergence time had a strong direct effect on flower production as well as an indirect effect through flowering time. The regression coefficient of flowering time on emergence time was significantly larger for male plants.
4 A phenotypic selection analysis revealed that seedlings emerging early suffered greater mortality than those emerging later. Seedlings emerging early, however, developed into plants with more flowers, indicating that there was a trade-off between survivorship and reproductive performance. Seeds with intermediate emergence times had the highest total fitness, indicating the presence of stabilizing selection. Despite the strong mortality selection against early emergers, we detected no shift in the sex ratio compared with the sex ratio of seeds matured under low-mortality greenhouse conditions. 相似文献
10.
Ian G. Jamieson 《Ecological Entomology》2002,27(1):41-48
Abstract 1. Tree weta are a group of large, flightless orthopterans with pronounced sexual dimorphism. Males have enlarged heads that are used in fighting for possession of cavities in trees or under rocks where females shelter during the day.
2. The fieldwork reported here examined the relationship between male head size and mating success in Hemideina maori , an alpine tree weta that shelters under rock slabs that have broken off isolated outcrops or tors.
3. The relationship between male head size and harem size in H. maori is not as clear-cut as thought previously. First, overall body size is a better predictor of male mating success than head size per se . Second, both body size and head size explained a relatively low percentage (19.8%) of the overall variation in mating success. Third, despite the intensity of directional selection being estimated to move the frequency distribution of head size and femur size 0.49 and 0.54 standard deviations from the mean, male heads and femurs were ≈ 2 mm smaller at the main study site than at a second site 100 m higher in elevation. A similar pattern was found for adult females. Additional surveys have indicated that body size in H. maori decreases with decreasing altitude, which is correlated with increasing night-time temperature.
4. Although there are reasons why natural selection might favour weta maturing earlier and at smaller body sizes in warmer environments, relatively large males would still have a mating advantage over smaller males under such conditions. This sexually dimorphic alpine insect might be a good example of the trade-offs and conflicting demands that sexual selection versus natural selection can place on organisms. 相似文献
2. The fieldwork reported here examined the relationship between male head size and mating success in Hemideina maori , an alpine tree weta that shelters under rock slabs that have broken off isolated outcrops or tors.
3. The relationship between male head size and harem size in H. maori is not as clear-cut as thought previously. First, overall body size is a better predictor of male mating success than head size per se . Second, both body size and head size explained a relatively low percentage (19.8%) of the overall variation in mating success. Third, despite the intensity of directional selection being estimated to move the frequency distribution of head size and femur size 0.49 and 0.54 standard deviations from the mean, male heads and femurs were ≈ 2 mm smaller at the main study site than at a second site 100 m higher in elevation. A similar pattern was found for adult females. Additional surveys have indicated that body size in H. maori decreases with decreasing altitude, which is correlated with increasing night-time temperature.
4. Although there are reasons why natural selection might favour weta maturing earlier and at smaller body sizes in warmer environments, relatively large males would still have a mating advantage over smaller males under such conditions. This sexually dimorphic alpine insect might be a good example of the trade-offs and conflicting demands that sexual selection versus natural selection can place on organisms. 相似文献
11.
The evolutionary causes of sexual dimorphism in plants have not been as widely studied as in animals and the importance of sexual selection in causing dimorphism remains controversial. Sexual selection is most obvious when it favours the evolution of a trait which enhances mating success at the expense of decreased viability. We studied the relationship between floral display (number of inflorescences), pollinator attraction and plant survival in a dioecious shrub, Leucadendron xanthoconus. Pollinator attraction, measured as the number of insect pollinators, increased linearly with floral display in males. However, males with extravagant displays had a higher probability of dying. Our data suggest that male plants are undergoing selection on floral display for increased mating success counterbalanced by selection against plants with extravagant displays. Seed set in females did not increase with floral display, except at very low inflorescence numbers. Nor was female survival correlated with floral display. Because inflorescences are terminal in the species, selection for more inflorescences in males causes increased ramification, thinner terminal branches and smaller leaves. Thus vegetative dimorphism in this species appears to be caused by selection for extravagant floral display in males, but not females. Limits to dimorphism are imposed by survival costs of elaborate display. 相似文献
12.
Sexually selected traits that are costly are predicted to be more condition dependent than nonsexually selected traits. Assuming resource limitation, increased allocation to a sexually selected trait may also come at a cost to other fitness components. To test these predictions, we varied adult food ration to manipulate condition in the colour dimorphic bug, Phymata americana. We compared the degree of condition dependence in a sexually selected trait expressed in males to a nonsexually selected trait expressed in males and females. We also evaluated the effects of condition on longevity of both sexes. We found that the expression of these colour pattern traits was strongly influenced by both diet and age. As expected, the strength of condition dependence was much more pronounced in the sexually selected, male-limited trait but the nonsexual trait also exhibited significant condition dependence in both sexes. The sexually selected male trait also exhibited a higher coefficient of phenotypic variation than the nonsexually selected trait in males and females. Diet had contrasting effects on male and female longevity; increased food availability had positive effects on female lifespan but these effects were not detected in males, suggesting that males allocated limited resources preferentially to sexually selected traits. These results are consistent with the expectation that optimal allocation to various fitness components differs between the sexes. 相似文献
13.
Sexually dimorphic weaponry often results from intrasexual selection, and weapon size can vary seasonally when costs of bearing the weapon exceed the benefits outside of the reproductive season. Weapons can also be favored in competition over nonreproductive resources such as food or shelter, and if such nonreproductive competition occurs year‐round, weapons may be less likely to vary seasonally. In snapping shrimp (Alpheus angulosus), both sexes have an enlarged snapping claw (a potentially deadly weapon), and males of many species have larger claws than females, although females are more aggressive. This contrasting sexual dimorphism (larger weaponry in males, higher aggression in females) raises the question of whether weaponry and aggression are favored by the same mechanisms in males and females. We used field data to determine whether either sex shows seasonal variation in claw size such as described above. We found sexual dimorphism increased during the reproductive season due to opposing changes in both male and female claw size. Males had larger claws during the reproductive season than during the nonreproductive season, a pattern consistent with sexual selection. Females, however, had larger claws during the nonreproductive season than during the reproductive season—a previously unknown pattern of variation in weapon size. The observed changes in female weapon size suggest a trade‐off between claw growth and reproduction in the reproductive season, with investment in claw growth primarily in the nonreproductive season. Sexually dimorphic weaponry in snapping shrimp, then, varies seasonally due to sex differences in seasonal patterns of investment in claw growth, suggesting claws may be advantageous for both sexes but in different contexts. Thus, understanding sexual dimorphisms through the lens of one sex yields an incomplete understanding of the factors favoring their evolution. 相似文献
14.
Jeanne A. Zeh David W. Zeh 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(3):509-520
The evolution of exaggerated male traits is frequently driven by competition between males to control resources critical for female survival and/or reproductive success. For flightless arthropods specializing on patchy habitats, dispersal agents may represent one such critical resource. The Neotropical pseudoscorpion, Semeiochernes armiger, disperses to new habitats by attaching to the giant timber fly, Pantophthalmus tabaninus, as it ecloses from pupal boreholes within decaying Ficus trees. In a study that combined field observations of mating with experimental removal of individuals from a large, pre‐dispersal population, our morphometric analyses revealed that S. armiger is among the most highly sexually dimorphic pseudoscorpions known, with males possessing unusual, triangular‐shaped pedipalpal chelae (hands) and a male‐specific, dimorphic chela peg that exhibits threshold trait expression. Several lines of evidence indicate that extreme sexual dimorphism in S. armiger results from male competition to monopolize pantophthalmid bores as strategic sites for inseminating females on the verge of dispersal. Sexually dimorphic pedipalpal characters were significantly larger in males located in and around pantophthalmid boreholes, compared with males collected at the periphery of the pantophthalmid emergence zone. Removal of pseudoscorpions resulted in a significant decline in pedipalpal size of males associated with pantophthalmid bores, followed by a rebound in size after collected individuals were returned to the tree. Most significantly, field observations of mating indicate that this competition translates into intense selection for exaggerated male traits, with all traits of the sexually dimorphic chelae exhibiting highly significant sexual selection differentials in males. © 2013 The Linnean Society of London 相似文献
15.
The postnatal ontogeny of the sexually dimorphic vocal apparatus in goitred gazelles (Gazella subgutturosa) 下载免费PDF全文
Kseniya O. Efremova Roland Frey Ilya A. Volodin Guido Fritsch Natalia V. Soldatova Elena V. Volodina 《Journal of morphology》2016,277(6):826-844
This study quantitatively documents the progressive development of sexual dimorphism of the vocal organs along the ontogeny of the goitred gazelle (Gazella subgutturosa). The major, male‐specific secondary sexual features, of vocal anatomy in goitred gazelle are an enlarged larynx and a marked laryngeal descent. These features appear to have evolved by sexual selection and may serve as a model for similar events in male humans. Sexual dimorphism of larynx size and larynx position in adult goitred gazelles is more pronounced than in humans, whereas the vocal anatomy of neonate goitred gazelles does not differ between sexes. This study examines the vocal anatomy of 19 (11 male, 8 female) goitred gazelle specimens across three age‐classes, that is, neonates, subadults and mature adults. The postnatal ontogenetic development of the vocal organs up to their respective end states takes considerably longer in males than in females. Both sexes share the same features of vocal morphology but differences emerge in the course of ontogeny, ultimately resulting in the pronounced sexual dimorphism of the vocal apparatus in adults. The main differences comprise larynx size, vocal fold length, vocal tract length, and mobility of the larynx. The resilience of the thyrohyoid ligament and the pharynx, including the soft palate, and the length changes during contraction and relaxation of the extrinsic laryngeal muscles play a decisive role in the mobility of the larynx in both sexes but to substantially different degrees in adult females and males. Goitred gazelles are born with an undescended larynx and, therefore, larynx descent has to develop in the course of ontogeny. This might result from a trade‐off between natural selection and sexual selection requiring a temporal separation of different laryngeal functions at birth and shortly after from those later in life. J. Morphol. 277:826–844, 2016. © 2016 Wiley Periodicals, Inc. 相似文献
16.
Temporal variation in male traits, nesting aggregations and mating success in the peacock blenny 总被引:1,自引:0,他引:1
R. F. Oliveira V. C. Almada E. Forsgren † E. J. Gonçalves 《Journal of fish biology》1999,54(3):499-512
At the beginning of the breeding season male Salaria pavo that have eggs in their nests are larger, have more developed anal glands and less intense eye-spots and are located in breeding aggregations. These differences cease to occur from the peak of the breeding season (June—July) onwards. Two scenarios are presented that may explain these results: (1) smaller and younger males may begin to breed later devoting part of the warm season to growth; (2) females may cease to be selective as the nesting space begins to be saturated with eggs. These results raise one methodological and one conceptual question. The search for correlates of male reproductive success must cover different phases of the breeding season to capture the overall dynamics of the processes involved. The operational sex ratio for cavity-spawning fishes should take into account the availability of spawning sites rather than just counting the sexually mature members of each sex. 相似文献
17.
Quantitative genetics and sex-specific selection on sexually dimorphic traits in bighorn sheep 总被引:1,自引:0,他引:1
Poissant J Wilson AJ Festa-Bianchet M Hogg JT Coltman DW 《Proceedings. Biological sciences / The Royal Society》2008,275(1635):623-628
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24+/-0.28 for horn volume and 0.63+/-0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass. 相似文献
18.
Daisuke Satomi Chiharu Koshio Haruki Tatsuta Shin‐ichi Kudo Yasuoki Takami 《Ecology and evolution》2019,9(8):4949-4957
Sexual traits are subject to evolutionary forces that maximize reproductive benefits and minimize survival costs, both of which can depend on environmental conditions. Latitude explains substantial variation in environmental conditions. However, little is known about the relationship between sexual trait variation and latitude, although body size often correlates with latitude. We examined latitudinal variation in male and female sexual traits in 22 populations of the false blister beetle Oedemera sexualis in the Japanese Archipelago. Males possess massive hind legs that function as a female‐grasping apparatus, while females possess slender hind legs that are used to dislodge mounting males. Morphometric analyses revealed that male and female body size (elytron length), length and width of the hind femur and tibia, and allometric slopes of these four hind leg dimensions differed significantly among populations. Of these, three traits showed latitudinal variation, namely, male hind femur was stouter; female hind tibia was slenderer, and female body was smaller at lower latitudes than at higher latitudes. Hind leg sizes and shapes, as measured by principal component analysis of these four hind leg dimensions in each sex, covaried significantly between sexes, suggesting coevolutionary diversification in sexual traits. Covariation between sexes was weaker when variation in these traits with latitude was removed. These results suggest that coevolutionary diversification between male and female sexual traits is mediated by environmental conditions that vary with latitude. 相似文献
19.
A. KRISTOPHER LAPPIN PAUL S. HAMILTON BRIAN K. SULLIVAN 《Biological journal of the Linnean Society. Linnean Society of London》2006,88(2):215-222
The Common Chuckwalla [ Sauromalus ater (= obesus )] is a large, sexually dimorphic lizard with a flattened head that takes refuge from predators in rock crevices. Males use their relatively large heads to bite competing males during territorial fights and to restrain females during copulation. Flattened heads with an antipredator function (i.e. seeking refuge in crevices) and enlarged heads with intrasexual competition and reproductive functions suggest possible antagonism between selective pressures on head morphology in males. To examine this hypothesis, we performed a morphometric analysis and measured the bite-force performance of 49 adult chuckwallas. Males had disproportionately wider heads than females, but did not have deeper heads. Males bit with nearly four times the force of females, consistent with the notion of sexual selection for high bite force in males. Although constrained by crevice-wedging behaviour, head depth was a good predictor of bite force in both sexes. In males, however, osteological head width also was a good predictor of bite force. These results are consistent with the hypothesis that head shape in males is under antagonistic selective pressures, which may partly explain the pattern of head shape dimorphism. The disproportionately wide head of males may reflect anatomical modifications to enhance bite force in response to sexual selection in spite of presumed constraints on head shape for crevice-wedging behaviour © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 215–222. 相似文献