首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calpains are a family of calcium-dependent proteases. Two isoforms, calpain 1 and 2, have been implicated in angiogenesis and endothelial cell adhesion and migration. Calpains regulate the function of eNOS;however, the relation of calpains and eNOS to lymphangiogenesisis still unclear. In the present study, we evaluated the role of calpain and eNOS in the formation of cords by lymphatic endothelial cells on Matrigel. Human lymphatic microvascular dermal-derived endothelial cells were transfected with siRNA against calpain 1 or 2. Calpain 2 knockdown, but not calpain 1 knockdown, significantly reduced cord formation, adhesion, and migration on Matrigel. These decreases correlated with a reduction in eNOS, and phosphorylated eNOS and Hsp90 levels, as assayed by immunoprecipitation and western blotting. In contrast, the knockdown of calpain 1, but not calpain 2,increased cell adhesion, enhanced migration, and stabilized late-stage cord formation by increasing cord length compared to the control. These differences correlated with an increase in the level of phosphorylated eNOS. The results indicated that the functions of calpains and eNOS are important for cord formation by lymphatic endothelial cells. For the first time, we have found different functions of calpain 1 and 2. Calpain 1 is involved in the degradation of eNOS and Hsp90 and the phosphorylation of eNOS,while calpain 2 regulates eNOS phosphorylation during cord formation by lymphatic endothelial cells on Matrigel.  相似文献   

2.
Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy.  相似文献   

3.
Endothelial progenitor cells (EPCs) play an important role in postnatal neovascularization. However, it is poorly understood whether EPCs contribute to lymphangiogenesis. Here, we assessed differentiation of a novel population of EPCs towards lymphatic endothelial cells and their lymphatic formation. CD34+VEGFR‐3+ EPCs were isolated from mononuclear cells of human cord blood by fluorescence‐activated cell sorting. These cells expressed CD133 and displayed the phenotype of the endothelial cells. Cell colonies appeared at 7–10 days after incubation. The cells of the colonies grew rapidly and could be repeatedly subcultured. After induction with VEGF‐C for 2 weeks, CD34+VEGFR‐3+ EPCs could differentiate into lymphatic endothelial cells expressing specific markers 5′‐nucleotidase, LYVE‐1 and Prox‐1. The cells also expressed hyaluronan receptor CD44. The differentiated cells had properties of proliferation, migration and formation of lymphatic capillary‐like structures in three‐dimensional collagen gel and Matrigel. VEGF‐C enhanced VEGFR‐3 mRNA expression. After interfering with VEGFR‐3 siRNA, the effects of VEGF‐C were diminished. These results demonstrate that there is a population of CD34+VEGFR‐3+ EPCs with lymphatic potential in human cord blood. VEGF‐C/VEGFR‐3 signalling pathway mediates differentiation of CD34+VEGFR‐3+ EPCs towards lymphatic endothelial cells and lymphangiogenesis. Cord blood‐derived CD34+VEGFR‐3+ EPCs may be a reliable source in transplantation therapy for lymphatic regenerative diseases.  相似文献   

4.
The lymphatic vasculature functions to maintain tissue perfusion homeostasis. Defects in its formation or disruption of the vessels result in lymphedema, the effective treatment of which is hampered by limited understanding of factors regulating lymph vessel formation. Mice lacking T1alpha/podoplanin, a lymphatic endothelial cell transmembrane protein, have malformed lymphatic vasculature with lymphedema at birth, but the molecular mechanism for this phenotype is unknown. Here, we show, using primary human lung microvascular lymphatic endothelial cells (HMVEC-LLy), that small interfering RNA-mediated silence of podoplanin gene expression has the dramatic effect of blocking capillary tube formation in Matrigel. In addition, localization of phosphorylated ezrin/radixin/moesin proteins to plasma membrane extensions, an early event in the capillary morphogenic program in lymphatic endothelial cells, is impaired. We find that cells with decreased podoplanin expression fail to properly activate the small GTPase RhoA early (by 30 min) after plating on Matrigel, and Rac1 shows a delay in its activation. Further indication that podoplanin action is linked to RhoA activation is that use of a cell-permeable inhibitor of Rho inhibited lymphatic endothelial capillary tube formation in the same manner as did podoplanin gene silencing, which was not mimicked by treatment with a Rac1 inhibitor. These data clearly demonstrate that early activation of RhoA in the lymphangiogenic process, which is required for the successful establishment of the capillary network, is dependent on podoplanin expression. To our knowledge, this is the first time that a mechanism has been suggested to explain the role of podoplanin in lymphangiogenesis.  相似文献   

5.
Diabetes mellitus (DM) and high glucose (HG) are known to reduce the bioavailability of nitric oxide (NO) by modulating endothelial nitric-oxide synthase (eNOS) activity. eNOS is regulated by several mechanisms including its interaction with heat shock protein (Hsp) 90. We previously discovered that DM in vivo and HG in vitro induced the translocation of Hsp90alpha to the outside of aortic endothelial cells. In this report we tested the hypothesis that translocation of Hsp90alpha is responsible for the decline in NO production observed in HG-treated cells. We found that HG increased phosphorylation of Hsp90alpha in a cAMP-dependent protein kinase A-dependent manner, and that this event was required for translocation of Hsp90alpha in porcine aortic endothelial cells. Furthermore, preventing translocation of Hsp90alpha protected from the HG-induced decline in eNOS.Hsp90alpha complex and NO production. Notably, DM increased phosphorylation of Hsp90alpha and reduced its association with eNOS in the aortic endothelium of diabetic rats. These studies suggest that translocation of Hsp90alpha is a novel mechanism by which HG and DM impair eNOS activity and thereby reduce NO production.  相似文献   

6.
Lymphangiogenesis is implicated in lymphatic metastasis of tumor cells. Recently, growing evidences show that endothelial progenitor cells (EPCs) are involved in lymphangiogenesis. This study has investigated effects of VEGF-C/VEGFR-3 (vascular endothelial growth factor receptor-3) signaling pathway on EPC differentiation and effectiveness of inhibiting lymphatic formation of EPCs with VEGFR-3 siRNA delivered in PEI (polyethylenimine)-alginate nanoparticles. CD34+VEGFR-3+ EPCs were sorted from mononuclear cells of human cord blood. Under induction with VEGF-C, the cells differentiated toward lymphatic endothelial cells. The nanoparticles were formulated with 25 kDa branched PEI and alginate. The size and surface charge of PEI-alginate nanoparticles loading VEGFR-3 siRNA (N/P = 16) are 139.1 nm and 7.56 mV respectively. VEGFR-3 siRNA specifically inhibited expression of VEGFR-3 mRNA in the cells. After treatment with PEI-alginate/siRNA nanocomplexes, EPCs could not differentiate into lymphatic endothelial cells, and proliferation, migration and lymphatic formation of EPC-derived cells were suppressed significantly. These results demonstrate that VEGFR-3 signaling plays an important role in differentiation of CD34+VEGFR-3+ EPCs. VEGFR-3 siRNA delivered with PEI-alginate nanoparticles can effectively inhibit differentiation and lymphangiogenesis of EPCs. Inhibiting VEGFR-3 signaling with siRNA/nanocomplexes would be a potential therapy for suppression of tumor lymphangiogenesis and lymphatic metastasis.  相似文献   

7.

Introduction and Objectives

Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice.

Results

A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells.

Conclusion

Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype.  相似文献   

8.
Nitric oxide (NO) release from endothelial cells, via endothelial NO synthase (eNOS) activation, is central to the proangiogenic actions of vascular endothelial growth factor (VEGF). VEGF signaling to eNOS is principally mediated by an Akt-dependent phosphorylation of eNOS and by increased association of eNOS to the molecular chaperone, heat-shock protein 90 kDa (Hsp90). Herein, we report that VEGFR-2 activation induces tyrosine phosphorylation of VEGF receptor 2 (VEGFR-2)-associated Hsp90beta. Tyrosine phosphorylation of Hsp90beta in response to VEGF is dependent on internalization of the VEGFR-2 and on Src kinase activation. Furthermore, we demonstrate that c-Src directly phosphorylates Hsp90 on tyrosine 300 residue and that this event is essential for VEGF-stimulated eNOS association to Hsp90 and thus NO release from endothelial cells. Our work identifies Y300 phosphorylation of Hsp90 as a novel regulated posttranslational modification of the chaperone and demonstrates its importance in the proangiogenic actions of VEGF, namely by regulating NO release from endothelial cells.  相似文献   

9.
Endothelial nitric-oxide synthase (eNOS), the enzyme responsible for production of endothelial NO, is under tight and complex regulation. Proper cellular localization of eNOS is critical for optimal coupling of extracellular stimulation with NO production. In addition, the molecular chaperone Hsp90 interacts with eNOS and positively regulates eNOS activity. Hsp90 is modulated by physical interaction with its co-chaperones. CHIP (carboxyl terminus of Hsp70-interacting protein) is such a co-chaperone that remodels the Hsp90 heterocomplex and causes protein degradation of some Hsp90 substrates through the ubiquitin-protein isopeptide ligase activity of CHIP. Here we show that CHIP incorporated into the eNOS.Hsp90 complex and specifically decreased soluble eNOS levels in transiently transfected COS cells. Surprisingly, in contrast to the effects of the Hsp90 inhibitor geldanamycin, which induces eNOS ubiquitylation and its subsequent protein degradation, CHIP did not target eNOS for ubiquitylation and proteasome-dependent degradation. Instead, CHIP partitioned soluble eNOS into an insoluble and inactive cellular compartment, presumably through its co-chaperone activity. This effect seems to be due to displacement of eNOS from the Golgi apparatus, which is otherwise required for trafficking of eNOS to the plasmalemma and subsequent activation. Consistent with observations from overexpression studies, eNOS localization to the membrane and activity were increased in mouse lung endothelial cells lacking CHIP. Taken together, these results demonstrate a novel co-chaperone-dependent mechanism through which eNOS trafficking is regulated and suggest a potentially generalized role for CHIP in protein trafficking through the Golgi compartment.  相似文献   

10.

Background

Metastasis to regional lymph nodes via lymphatic vessels plays a key role in cancer progression. Tumor lymphangiogenesis is known to promote lymphatic metastasis, and vascular endothelial growth factor C (VEGF-C) is a critical activator of tumor lymphangiogenesis during the process of metastasis. We previously identified periostin as an invasion- and angiogenesis-promoting factor in head and neck squamous cell carcinoma (HNSCC). In this study, we discovered a novel role for periostin in tumor lymphangiogenesis.

Methods and Findings

Periostin overexpression upregulated VEGF-C mRNA expression in HNSCC cells. By using conditioned media from periostin-overexpressing HNSCC cells, we examined tube formation of lymphatic endothelial cells. Conditioned media from periostin-overexpressing cells promoted tube formation. To know the correlation between periostin and VEGF-C, we compared Periostin expression with VEGF-C expression in 54 HNSCC cases by immunohistochemistry. Periostin expression was correlated well with VEGF-C expression in HNSCC cases. Moreover, correlation between periostin and VEGF-C secretion was observed in serum from HNSCC patients. Interestingly, periostin itself promoted tube formation of lymphatic endothelial cells independently of VEGF-C. Periostin-promoted lymphangiogenesis was mediated by Src and Akt activity. Indeed possible correlation between periostin and lymphatic status in periostin-overexpressing xenograft tumors and HNSCC cases was observed.

Conclusions

Our findings suggest that periostin itself as well as periostin-induced upregulation of VEGF-C may promote lymphangiogenesis. We suggest that periostin may be a marker for prediction of malignant behaviors in HNSCC and a potential target for future therapeutic intervention to obstruct tumoral lymphatic invasion and lymphangiogenesis in HNSCC patients.  相似文献   

11.
Renal lymphangiogenesis is a new field of international nephrology in recent years and plays an important role in the progression of chronic renal disease. CD137 was originally described as a surface molecule present on activated T and NK cells and detected on hypoxic endothelial cells and inflamed blood vessels, but its function on lymphatic endothelial cells remains unclear. We investigated the relationships among CD137, lymphangiogenesis and macrophages, which are involved in interstitial fibrosis. Similar to other chronic inflammatory diseases, we found lymphangiogenesis and expression of CD137 in the renal tissue of patients with IgA nephropathy. CD137-positive lymphatic vessels were involved in the development process of IgA nephropathy and positively correlated with serum creatinine, serum urea nitrogen, serum uric acid, and urinary 24 h total protein. The expression of these indicators was negatively correlated with eGFR, plasma albumin, and HB. In mouse models of UUO, we verified that CD137 expression was significantly elevated during lymphangiogenesis and that its ligand CD137L was released by macrophages after VEGF-C stimulation in the kidney. In vitro, recombinant CD137L significantly enhanced LEC proliferation, migration and tube formation, and these effects were inhibited by CD137 siRNA. Mechanistically, the CD137L interaction with CD137 induced the transition from LC3-I to LC3-II and the expression of Atg5, Atg7, Atg12 and p62 proteins by activating the PI3K/AKT/mTOR pathway to promote autophagy. Knockdown of Atg5 and Atg7 blocked CD137L-induced autophagy. Thus, we propose that CD137L secretion by macrophages interacts with CD137 on lymphatic endothelial cells to prompt lymphangiogenesis in the kidney, which further drives fibrogenic responses. Our findings suggest that inhibition of the CD137-CD137L pathway is a novel therapeutic approach for obstructive nephropathy.  相似文献   

12.
The effects of DNA damage on NO production have not been completely elucidated. Using ultraviolet (UV) irradiation as a DNA-damaging agent, we studied its effect on NO production in bovine aortic endothelial cells (BAEC). UV irradiation acutely increased NO production, the phosphorylation of endothelial NO synthase (eNOS) at serine 1179, and eNOS activity. No alterations in eNOS expression nor phosphorylation at eNOS Thr497 or eNOS Ser116 were found. SB218078, a checkpoint kinase 1 (Chk1) inhibitor, inhibited UV-irradiation-stimulated eNOS-Ser1179 phosphorylation and NO production. Similarly, ectopic expression of small interference RNA for Chk1 or a dominant-negative Chk1 repressed the UV-irradiation stimulatory effect, whereas wild-type Chk1 increased basal eNOS-Ser1179 phosphorylation. Purified Chk1 directly phosphorylated eNOS Ser1179 in vitro. Confocal microscopy and coimmunoprecipitation studies revealed a colocalization of eNOS and Chk1. In basal BAEC, heat shock protein 90 (Hsp90) predominantly interacted with Chk1. This interaction, which decreased significantly in response to UV irradiation, was accompanied by increased interaction of Hsp90 with eNOS. The Hsp90 inhibitor geldanamycin attenuated UV-irradiation-stimulated eNOS-Ser1179 phosphorylation by dissociating Hsp90 from eNOS. UV irradiation and geldanamycin did not alter the interaction between eNOS and Chk1. Overall, this is the first study demonstrating that Chk1 directly phosphorylates eNOS Ser1179 in response to UV irradiation, which is dependent on Hsp90 interaction.  相似文献   

13.
The 90-kDa heat shock protein (Hsp90) plays an important role in endothelial nitric-oxide synthase (eNOS) regulation. Besides acting as an allosteric enhancer, Hsp90 was shown to serve as a module recruiting Akt to phosphorylate the serine 1179/1177 (bovine/human) residue of eNOS. Akt is activated by the phosphorylation of 3-phosphoinositide-dependent kinase 1 (PDK1). Whether PDK1 is involved in the actions of Hsp90 on eNOS phosphorylation and function remains unknown. To address this issue, we treated bovine eNOS stably transfected human embryonic kidney 293 cells with Hsp90 inhibitors and determined the alterations of phospho-eNOS, Akt, and PDK1. Both geldanamycin and radicicol, two structurally different Hsp90 inhibitors, selectively reduced serine 1179-phosphorylated eNOS, leading to decreased enzyme activity. In Hsp90-inhibited cells, eNOS-associated phospho-Akt was decreased, but the total amount of Akt associated with eNOS remained the same. Further studies showed that Hsp90 inhibition dramatically depleted intracellular PDK1. Proteasome but not caspase blockade prevented the loss of PDK1 caused by Hsp90 inhibition. Silencing the PDK1 gene by small interfering RNA was sufficient to induce reduction of phospho-Akt and consequent loss of serine 1179-phosphorylated eNOS. Moreover, overexpression of PDK1, but not Akt, reversed Hsp90 inhibition-induced loss of eNOS serine 1179 phosphorylation and salvaged enzymatic activity. Thus, in addition to functioning as a module to recruit Akt to eNOS, Hsp90 also critically stabilized PDK1 by preventing it from proteasomal degradation. Inhibition of Hsp90 function resulted in PDK1 depletion and thus triggered a cascade of Akt deactivation, loss of eNOS serine 1179 phosphorylation, and decrease of enzyme function.  相似文献   

14.
δ-catenin, an adherens junctions protein, is not only involved in early development, cell-cell adhesion and cell motility in neuronal cells, but it also plays an important role in vascular endothelial cell motility and pathological angiogenesis. In this study, we report a new function of δ-catenin in lymphangiogenesis. Consistent with expression of δ-catenin in vascular endothelial cells, we detected expression of the gene in lymphatic endothelial cells (LECs). Ectopic expression of δ-catenin in LECs increased cell motility and lymphatic vascular network formation in vitro and lymphangiogenesis in vivo in a Matrigel plug assay. Conversely, knockdown of δ-catenin in LECs impaired lymphangiogenesis in vitro and in vivo. Biochemical analysis shows that δ-catenin regulates activation of Rho family small GTPases, key mediators in cell motility. δ-catenin activates Rac1 and Cdc42 but inhibits RhoA in LECs. Notably, blocking of Rac1 activation impaired δ-catenin mediated lymphangiogenesis in a Matrigel assay. Consistently, loss of δ-catenin in mice inhibited the growth of tumor metastases. Taken together, these findings identify a new function of δ-catenin in lymphangiogenesis and tumor growth/metastasis, likely through modulation of small Rho GTPase activation. Targeting δ-catenin may offer a new way to control tumor metastasis.  相似文献   

15.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone that is essential for eukaryotic homeostasis. Hsp90α can also be secreted extracellularly, where it has been shown to be involved in tumor metastasis. Extracellular Hsp90α interacts with and promotes the proteolytic activity of matrix metalloproteinase-2 (MMP-2). However, the regulatory mechanism of Hsp90α on MMP-2 activity is still unknown. Here we show that Hsp90α stabilizes MMP-2 and protects it from degradation in tumor cells. Further investigation reveals that this stabilization effect is isoform-specific, ATP-independent, and mediated by the interaction between the Hsp90α middle domain and the MMP-2 C-terminal hemopexin domain. Moreover, this mechanism also applies to endothelial cells that secrete more Hsp90α in their proliferating status. Furthermore, endothelial cell transmigration, Matrigel plug, and tumor angiogenesis assays demonstrate that extracellular Hsp90α promotes angiogenesis in an MMP-2-dependent manner. In sum, this study provides new insights into the molecular mechanism of how Hsp90α regulates its extracellular client proteins and also reveals for the first time the function of extracellular Hsp90α in promoting tumor angiogenesis.  相似文献   

16.
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins is involved in many important cellular processes. Increased O-GlcNAc has been implicated in major diseases, such as diabetes and its complications and cardiovascular and neurodegenerative diseases. Recently, we reported that O-GlcNAc modification occurs in the proteasome and serves to inhibit proteasome function by blocking the ATPase activity in the 19S regulatory cap, explaining, at least in part, the adverse effects of O-GlcNAc modification and suggesting that downregulating O-GlcNAc might be important in the treatment of human diseases. In this study, we report on a novel mechanism to modulate cellular O-GlcNAc modification, namely through heat shock protein 90 (Hsp90) inhibition. We observed that O-linked β-N-acetylglucosamine transferase (OGT) interacts with the tetratricopeptide repeat binding site of Hsp90. Inhibition of Hsp90 by its specific inhibitors, radicicol or 17-N-allylamino-17-demethoxygeldanamycin, destabilized OGT in primary endothelial cell cultures and enhanced its degradation by the proteasome. Furthermore, Hsp90 inhibition downregulated O-GlcNAc protein modifications and attenuated the high glucose-induced increase in O-GlcNAc protein modification, including high glucose-induced increase in endothelial or type 3 isoform of nitric oxide synthase (eNOS) O-GlcNAcylation. These results suggest that Hsp90 is involved in the regulation of OGT and O-GlcNAc modification and that Hsp90 inhibitors might be used to modulate O-GlcNAc modification and reverse its adverse effects in human diseases.  相似文献   

17.
Heat shock protein 90 (Hsp90) binding to endothelial nitric oxide synthase (eNOS) is an important step in eNOS activation. The conformational state of bound Hsp90 determines whether eNOS produces nitric oxide (NO) or superoxide (O(2)(*-)). We determined the effects of the Hsp90 antagonists geldanamycin (GA) and radicicol (RA) on basal and ACh-stimulated changes in vessel diameter, cGMP production, and Hsp90:eNOS coimmunoprecipitation in piglet resistance level pulmonary arteries (PRA). In perfused piglet lungs, we evaluated the effects of GA and RA on ACh-stimulated changes in pulmonary arterial pressure (Ppa) and perfusate accumulation of stable NO metabolites (NOx(-)). The effects of GA and RA on ACh-stimulated O(2)(*-) generation was investigated in cultured pulmonary microvascular endothelial cells (PMVEC) by dihydroethidine (DHE) oxidation and confocal microscopy. Hsp90 inhibition with GA or RA reduced ACh-mediated dilation, abolished the ACh-stimulated increase in cGMP, and reduced eNOS:Hsp90 coprecipitation. GA and RA also inhibited the ACh-mediated changes in Ppa and NOx(-) accumulation rates in perfused lungs. ACh increased the rate of DHE oxidation in PMVEC pretreated with GA and RA but not in untreated cells. The cell-permeable superoxide dismutase mimetic M40401 reversed GA-mediated inhibition of ACh-induced dilation in PRA. We conclude that Hsp90 is a modulator of eNOS activity and vascular reactivity in the newborn piglet pulmonary circulation. Uncoupling of eNOS with GA or RA inhibits ACh-mediated dilation by a mechanism that involves O(2)(*-) generation.  相似文献   

18.
Corneal lymphangiogenesis plays a key role in diverse pathological conditions of the eye. Here, we demonstrate that a versatile extracellular matrix protein, transforming growth factor‐β induced protein (TGFBIp), promotes lymphatic sprouting in corneal lymphangiogenesis. TGFBIp is highly up‐regulated in inflamed mouse corneas. Immunolocalization of TGFBIp is detected in infiltrating macrophages in inflamed mouse corneas. Subconjunctival injection of liposomal clodronate can significantly reduce macrophage infiltration in inflamed mouse cornea, and decrease the expression of TGFBIp and areas of corneal lymphangiogenesis and angiogenesis after corneal suture placement. In brief, these results indicate that the up‐regulation of TGFBIp in sutured cornea correlates with macrophage infiltration. Although TGFBIp alone cannot significantly stimulate corneal lymph vessel ingrowth in vivo, it can enhance the effect of vascular endothelial growth factor‐C in promoting corneal lymphangiogenesis. The in vitro results show that TGFBIp promotes migration, tube formation and adhesion of human lymphatic endothelial cells (HLECs), but it has no effect on HLECs' proliferation. We also find that the in vitro effect of TGFBIp is mediated by the integrin α5β1‐FAK pathway. Additionally, integrin α5β1 blockade can significantly inhibit lymphatic sprouting induced by TGFBIp. Taken together, these findings reveal a new molecular mechanism of lymphangiogenesis in which the TGFBIp‐integrin pathways plays a pivotal role in lymphatic sprouting.  相似文献   

19.
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell–matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM–cell and cell–cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.  相似文献   

20.

Background

Lymphangiogenesis is a highly regulated process involved in the pathogenesis of disease. Current in vivo models to assess lymphangiogenesis are largely unphysiologic. The zebrafish is a powerful model system for studying development, due to its rapid growth and transparency during early stages of life. Identification of a network of trunk lymphatic capillaries in zebrafish provides an opportunity to quantify lymphatic growth in vivo.

Methods and Results

Late-phase microangiography was used to detect trunk lymphatic capillaries in zebrafish 2- and 3-days post-fertilization. Using this approach, real-time changes in lymphatic capillary development were measured in response to modulators of lymphangiogenesis. Recombinant human vascular endothelial growth factor (VEGF)-C added directly to the zebrafish aqueous environment as well as human endothelial and mouse melanoma cell transplantation resulted in increased lymphatic capillary growth, while morpholino-based knockdown of vegfc and chemical inhibitors of lymphangiogenesis added to the aqueous environment resulted in decreased lymphatic capillary growth.

Conclusion

Lymphatic capillaries in embryonic and larval zebrafish can be quantified using late-phase microangiography. Human activators and small molecule inhibitors of lymphangiogenesis, as well as transplanted human endothelial and mouse melanoma cells, alter lymphatic capillary development in zebrafish. The ability to rapidly quantify changes in lymphatic growth under physiologic conditions will allow for broad screening of lymphangiogenesis modulators, as well as help define cellular roles and elucidate pathways of lymphatic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号