首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
To evaluate the penetration of the blood-brain barrier by 9-fluoropropyl-(+)-dihydrotetrabenazine (AV-133), microdialysis probes were implanted simultaneously into rat blood and brain, and a liquid chromatography-tandem mass spectrometric method was developed and validated to monitor the AV-133 concentration in the microdialysates. The chromatographic separation was performed on an XTerra C(18) column (150 mm × 2.1 mm i.d., 5 μm particles) with gradient elution. The mass spectrometer was operated in positive mode using electrospray ionization. The analytes were measured using the multiple-reaction-monitoring mode. The calibration curves were linear over the range of 5.00-1000 ng/mL AV-133, with a coefficient of determination >0.995. The accuracies ranged from 99.5% to 105.0% and the precisions were <10% for AV-133. This method was used to determine the concentrations of AV-133 and its pharmacokinetics in the brains and blood of rats. The blood and brain concentration-time profiles for AV-133 were obtained, and the blood-brain barrier penetration was evaluated.  相似文献   

2.
Vincristine is a natural vinca alkaloid widely used in paediatric cancer treatment. Vincristine pharmacokinetics has been already studied, but few data are available in paediatric populations. A sensitive and specific liquid chromatography–tandem mass spectrometry (LC/MS/MS) method was developed for the quantification of vincristine in plasma in order to investigate pharmacokinetics in a paediatric population. Two hundred microliters of plasma was added to vinblastine, used as internal standard. Chromatographic separation was achieved on a C8 HPLC column (Phenomenex Luna 50 mm × 2.0 mm, 3.0 μm) with a mobile phase gradient at a flow rate of 0.2 ml/min. Quantification was performed using the transition of 825.4  765.4 (m/z) for vincristine and 811.4  751.4 (m/z) for vinblastine. Chromatographic separation was achieved in 8 min. The limit of quantification was 0.25 ng/ml with a precision of 10.2% and an accuracy of 99.6%. The calibration curve was linear up to 50.0 ng/ml. Intra-day precision and accuracy ranged from 6.3% to 10% and from 91.9% to 100.8%, respectively. Inter-assay precision and accuracy ranged from 3.8% to 9.7% and from 93.5% to 100.5%, respectively. No significant matrix effect was observed for vincristine. A rapid, specific and sensitive LC/MS/MS method for quantification of vincristine in human plasma was developed and is now successfully applied for pharmacokinetic studies in paediatric patients.  相似文献   

3.
This paper reports an LC–MS/MS method with positive electrospray ionization for the screening of commonly prescribed cardiovascular drugs in human plasma, including compounds with antihypertensive (57), antidiabetic (12), hypolipemiant (5), anticoagulant (2) and platelet anti-aggregation (2) effects. Sample treatment consisted of a simple protein precipitation with MeOH/0.1 M ZnSO4 (4:1, v/v) solution after the addition of internal standard, followed by evaporation and reconstitution. Analytes separation was performed on a Polar-RP column (150 mm × 2 mm, 4 μm) using a gradient elution of 15 min. The MS system was operated in MRM mode, monitoring one quantitation and one confirmation transition for each analyte. The recovery of the protein precipitation step ranged from 50 to 70% for most of the compounds, while some were considerably affected by matrix effects. Since several analytes fulfilled the linearity, accuracy and precision values required by the ICH guidelines, the method proved to be suitable for their quantitative analysis. The limits of quantitation varied from 0.38 to 9.1 μg/L and the limits of detection from 0.12 to 5.34 μg/L. The method showed to be suitable for the detection of plasma samples of patients under cardiovascular treatment with the studied drugs, and for 55 compounds reliable quantitative results could be obtained.  相似文献   

4.
A high throughput and specific method using ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) was developed for the simultaneous determination of diltiazem and its two metabolite (N-desmethyldiltiazem and O-desacetyldiltiazem) in human plasma. A one-step liquid–liquid extraction (LLE) with methyl-t-butyl ether (MTBE) involved for the extraction of diltiazem (DLTZ), metabolites (DMeD and DAcD) and internal standard. Analytes were chromatographed on a ACQUITY UPLC? BEH C18 column (100 mm × 2.1 mm, i.d., 1.7 μm) with isocratic elution at a flow rate of 0.2 mL/min using 10 mM ammonium acetate buffer–acetonitrile (25:75, v/v). The Quattro Premier XE LC–MS/MS was operated under the multiple reaction-monitoring mode (MRM) using the electrospray ionization technique. Using 300 μL plasma, the method was validated over the concentration range 0.48–639.9 ng/mL for DLTZ and 0.24–320.1 for DMeD and 0.24–320.7 ng/mL for DAcD, with a lower limit of quantification of 0.48 ng/mL for DLTZ and 0.24 ng/mL for metabolites. The intra- and inter-day precision and accuracy were within 10.0%. The recovery was 77.4%, 76.0%, 74.5% and 74.1% for DLTZ, DMeD, DAcD and Ziprasidone, respectively. Total run time was 2.0 min only.  相似文献   

5.
A sensitive and specific method using ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) was developed for the determination of levetiracetam (LEV) in plasma of neonates. A plasma aliquot of 50 μl was deproteinized by addition of 500 μl methanol which contained 5 μg/ml UCB 17025 as an internal standard. After centrifugation, 50 μl of supernatant was diluted with 1000 μl of 0.1% formic acid–10 mM ammonium formate in water (pH 3.5) (mobile phase solution A) and 2 μl was injected onto the UPLC-system. Compounds were separated on a Acquity UPLC BEH C18 2.1 mm × 100 mm column using gradient elution with mobile phase solution A and 0.1% formic acid in methanol (mobile phase solution B) with a flow rate of 0.4 ml/min and a total runtime of 4.0 min. LEV and the internal standard were detected using positive ion electrospray ionization followed by tandem mass spectrometry (ESI-MS/MS). The assay allowed quantification of LEV plasma concentrations in the range from 0.5 μg/ml to 150 μg/ml. Inter-assay inaccuracy was within ±2.7% and inter-assay precision was less than 4.5%. Matrix effects were minor: the recovery of LEV was between 97.7% and 100%. The developed method required minimal sample preparation and less plasma sample volume compared to earlier published LC–MS/MS methods. The method was successfully applied in a clinical pharmacokinetic study in which neonates received intravenous administrations of LEV for the treatment of neonatal seizures.  相似文献   

6.
A rapid 2 min liquid chromatography–tandem mass spectrometry (LC–MS/MS) method operating in multiple reaction ion monitoring mode was developed and validated that allows for the characterization and simultaneous quantification of 11 phytoestrogen metabolites with mass transitions m/z 241/119 (equol), 253/132 (daidzein), 255/149 (dihydrodaidzein), 257/108 (O-desmethylangolesin), 269/133 (genistein), 283/184 (glycitein), 267/191 (formononetin), 289/109 (biochanin A), 267/91 (coumestrol), enterodiol (301/253), and enterolactone (297/253). The method was demonstrated to be specific and sensitive, and a linear response for each phytoestrogen was observed over a range of 1–5000 ng/mL in human serum with the exception of dihydrodaidzein, whose lower limit of quantification was 2 ng/mL. The separation was carried out on a Synergi Polar-RP 2.5 micron (50 mm × 2.0 mm i.d.) column at 50 °C with water and acetonitrile (both containing 10 mM ammonium acetate) as the mobile phase under gradient conditions at a flow rate of 0.75 mL/min. This LC–MS/MS method is very useful for high-throughput analysis of phytoestrogens and proved to be simple, sensitive, reproducible, and reliable.  相似文献   

7.
Fathead minnows (Pimephales promelas) comprise a species-of-choice for the hazard assessments of various environmental contaminants, including compounds capable of disrupting endocrine function. Towards this end, the use of liquid chromatography coupled with mass spectrometry (LC–MS) and/or tandem mass spectrometry (MS/MS) is gaining common use for the quantification of steroid hormones as biomarkers of endocrine stress in small-fish toxicological studies. In this work, 2-hydrazinopyridine (2-HP) was used to derivatize and quantify the physiologically relevant steroid hormones of: 17α-hydroxypregnenolone, progesterone, 11-ketotestosterone, 11-deoxycortisol and 17α,20β-dihydroxypregnenone, in the blood plasma of male and female fathead minnows. Liquid chromatographic separation was achieved using a Waters? Sunfire C18 column (2.1 mm × 50 mm with a 3.5 μm particle size) and Milli-Q water:methanol (both with 0.1% formic acid) mobile phase over a gradient of 15 min. All mass analyses were conducted using electrospray ionization in the positive mode with tandem mass spectrometry (ESI+/MS/MS). This is the first such application of 2-HP derivatization for the quantifications of the structurally and functionally diverse C19 androgen of 11-ketotestosterone; C21 progestogens of 17α-hydroxypregnenolone, progesterone and17α,20β-dihydroxypregnenone; and C21 corticosteroid of 11-deoxycortisol, in fathead minnow blood plasma. The limits of detection (LOD) were set to the lowest calibration standard that gave a signal-to-background response of ≥3, and were: 0.16 ng/ml for progesterone, 0.63 ng/ml for 17α-hydroxypregnenolone, 11-deoxycortisol and 17α,20β-dihydroxypregnenone, and 1.25 ng/ml for 11-ketotestosterone. This study demonstrates the application of 2-HP derivatization for the analysis of a variety of steroid hormones representative of endocrine function in a species of fish commonly used in toxicological studies.  相似文献   

8.
High-performance liquid chromatography, coupled to tandem mass spectrometry (HPLC–MS/MS) has been established as the method of choice for the sensitive and simultaneous determination of different folates in a particular matrix, especially when only minute quantities of material are available. Using a previously developed and validated HPLC–MS/MS method as a starting point, we here report on the development and validation of an ultra-performance liquid chromatography (UPLC–MS/MS) method for analysis of folates in rice, which allows higher throughput and better resolution. UPLC was performed under gradient conditions on an Acquity HSS T3 column, followed by tandem mass spectrometry detection. The method was validated based on linearity, sensitivity, precision, accuracy and matrix effects. The limits of detection and the lower limits of quantification varied between 0.06 and 0.45 μg/100 g and 0.12 and 0.91 μg/100 g, respectively. Two linear calibration curves were established, one for the low and the other for the high concentration range. Analysis of the distribution and levels of folates in wild-type and folate-biofortified rice showed up to 50-fold enrichment in biofortified rice, with total folate levels of up to 900 μg/100 g rice. This is the first successful implementation of a UPLC method for the rapid and sensitive quantitative determination of folates in plant material.  相似文献   

9.
A method for the determination of tranexamic acid (TXA) in human plasma and cerebral spinal fluid (CSF) was developed. Analyses were performed by ultra performance liquid chromatography with tandem mass spectrometry detection (UPLC–MS/MS) using ?-aminocaproic acid (ACA) as an internal standard. TXA and ACA were extracted from a 50 μL sample of plasma or CSF using a methanol protein crash protocol, and chromatographic separation was performed on an ACQUITY? TQD mass spectrometer using a UPLC C18 BEH 1.7 μm column with a water and methanol gradient containing 0.1% formic acid. The detection and quantitation was performed by positive ion electrospray ionization using the multiple reaction monitoring (MRM) mode. The method was linear over the concentration range of 0.1–10.0 μg/mL, with lower limit of quantitation of 0.1 μg/mL for TXA. The intra- and inter-assay precision was less than 12% and 13% respectively at the plasma and CSF TXA concentrations tested. The present method provides a relatively simple and sensitive assay with short turn-around-time. The method has been successfully applied to assess the plasma and CSF concentrations of tranexamic acid achieved with only one dosing regimen of tranexamic acid in patients undergoing cardiopulmonary bypass surgery (CPB).  相似文献   

10.
A sensitive and reliable liquid chromatography–electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) has been developed and validated for simultaneous determination of active components, i.e., xanthone glycosides (neomangiferin and mangiferin), timosaponins (timosaponin E1, timosaponin B-II and timosaponin B) and alkaloids (palmatine and berberine) in rat plasma after oral administration of Zi-Shen Pill extract. Plasma samples were pretreated by protein precipitation with acetonitrile containing the internal standards ginsenoside Re (for xanthone glycosides and timosaponins) and tetrahydroberberine (for alkaloids). LC separation was achieved on a Zorbax SB-C18 column (150 mm × 2.1 mm I.D., 3.5 μm) with gradient elution using a mobile phase consisting of acetonitrile-0.1% formic acid in water at a flow rate of 0.25 mL/min. The detection was carried out by a triple–quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via polarity switching between negative (for xanthone glycosides and timosaponins) and positive (for alkaloids) ionization mode. Linear calibration curves were obtained over the concentration range of 5–1000 ng/mL for mangiferin, 0.5–100 ng/mL for neomangiferin, timosaponin E1, timosaponin B-II and timosaponin B, and 0.05–10 ng/mL for palmatine and berberine. The mean recovery of all the analytes ranged from 64.7 to 93.8%. The intra- and inter-day precision (% R.S.D.) was within 11.7% and accuracy (% bias) ranged from ?9.0 to 10.9%. This fully validated method was successfully applied to pharmacokinetic study of the above seven compounds in rats.  相似文献   

11.
A LC–MS/MS method was developed and validated for determination of nucleoside analog (NA) in rat plasma. The method run time was 6 min and the limit of quantification (LOQ) was estimated at 100 pg/mL. The extraction procedure consisted on plasma samples protein precipitation with an acetonitrile solution which contained the stable isotope labeled internal standard (IS). Chromatography was performed on a newly developed C16 column (150 mm × 4.6 mm, 5 μm) in order to avoid the use ion pair salts. The samples were eluted at 0.8 mL/min with a gradient of mobile phase made of water and acetonitrile both acidified with 0.5% acetic acid and 0.025% trifluoroacetic acid (TFA). A tandem mass spectrometer was used as a detector for quantitative analysis. Intra-run and inter-run precision and accuracy within ±15% were achieved during a 3-run validation for quality control samples at four concentration levels in rat plasma, over a concentration ranging between 0.1 and 1000 ng/mL. The data indicate that our LC–MS/MS assay is an effective method for the pharmacokinetics study of NA in rat plasma.  相似文献   

12.
A liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneous determination of eight β-lactam antibiotics, including ampicillin, cefazolin, cefepime, cefmetazole, cefotaxime, doripenem, meropenem, and piperacillin, in human serum. Sample specimens were subjected to solid phase extraction (SPE) using Waters Oasis® HLB cartridges (30 mg). Chromatographic separation was performed with a high-resolution octadecyl silica column compatible with hydrophilic compounds, using a gradient of 10 mM aqueous ammonium formate containing 0.1% formic acid-methanol. Antibiotics were detected by a triple quadrupole mass spectrometer (MS/MS) with electrospray ionization and quantified by the multiple reaction monitoring mode. A total run time of 13 min was applied. Linearity in the calibration was obtained over a range of 0.1–50 μg/mL of the β-lactam antibiotics, except for doripenem. The lower limit of quantification was 0.005–0.5 μg/mL, using 50 μL serum. The recovery rate exceeded 80.2% for these analytes, except for doripenem (49.1%) and meropenem (62.3%). The present method is applicable to routine therapeutic monitoring of β-lactam antibiotics in clinical practice.  相似文献   

13.
A rapid, sensitive, and specific method for the determination of amoxicillin (AMO), amoxicilloic acid (AMA), amoxicillin diketopiperazine-2′,5′-dione (DIKETO), penicillin G (PEN G), benzylpenicilloic acid (BPA-1), benzylpenilloic acid (BPA-2), and benzylpenillic acid (BPA-3) in bovine milk using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) was developed and validated. The method used penicillin V (PEN V) as the internal standard and ethanol for the deproteinisation of bovine milk. Chromatographic separation of the components was performed on a Waters Acquity UPLC® HSS T3 column (100 mm × 2.1 mm, 1.8 μm) using a mixture of 0.15% formic acid in water with 5 mM ammonium acetate and acetonitrile as the mobile phase. Gradient elution was performed at a flow rate of 0.25 mL min?1. The mass spectrometer was operated in the positive electrospray ionisation MS/MS mode. The method was fully validated according to EU requirements, including linearity, precision, trueness, limit of quantification, limit of detection, and specificity. The results were within the ranges specified. The established method was successfully applied in the determination of AMO, PEN G, and their major metabolites in 40 commercial bovine milk samples. The results showed that 8 samples were contaminated with BPA-1 or BPA-2. The mean levels (occurrence) of BPA-1 and BPA-2 in positive samples were 287 (50%) and 320 (100%) ng mL?1, respectively. No sample was found to be contaminated with AMO, AMA, DIKETO, PEN G, and BPA-3. These findings could play an important role in food safety, because BPA-1 and BPA-2 metabolites pose possible health risks, although they are not included in the maximum residue limit legislation.  相似文献   

14.
Pyrrole (Py)–imidazole (Im) polyamides synthesized by combining N-methylpyrrole and N-methylimidazole amino acids have been identified as novel candidates for gene therapy. In this study, a sensitive method using liquid chromatography–tandem mass spectrometry (LC–MS/MS) with an electrospray ionization (ESI) source was developed and validated for the determination and quantification of Py–Im polyamide in rat plasma. Py–Im polyamide was extracted from rat plasma by solid-phase extraction (SPE) using a Waters Oasis® HLB cartridge. Separation was achieved on an ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 50 mm) column by gradient elution using acetonitrile:distilled water:acetic acid (5:95:0.1, v/v/v) and acetonitrile:distilled water:acetic acid (95:5:0.1, v/v/v). The method was validated over the range of 10–1000 ng/mL and the lower limit of quantification (LLOQ) was 10 ng/mL. This method was successfully applied to the investigation of the pharmacokinetics of Py–Im polyamide after intravenous administration.  相似文献   

15.
A rapid, selective and sensitive high performance liquid chromatography–tandem mass spectrometry method (LC–MS/MS) was developed and validated for the determination and pharmacokinetic investigation of cefuroxime in human plasma. Cefuroxime and the internal standard (IS), cefoxitin, were extracted from plasma samples using solid phase extraction with Oasis HLB cartridges. Chromatographic separation was performed on a LiChrospher® 60 RP Select B column (125 mm × 4 mm i.d., 5 μm particle size) using acetonitrile:5 ± 0.2 mM ammonium acetate solution:glacial acetic acid (70:30:0.020, v/v/v) as the mobile phase at a flow rate of 0.8 mL/min. Detection of cefuroxime and cefoxitin was achieved by tandem mass spectrometry with an electrospray ionization (ESI) interface in negative ion mode. The calibration curves were linear over the range of 81.0–15976.2 ng/mL with the lower limit of quantitation validated at 81.0 ng/mL. The intra- and inter-day precisions were within 7.6%, while the accuracy was within ±6.3% of nominal values. No matrix effect was observed in this method. The validated LC–MS/MS method was successfully applied for the evaluation of pharmacokinetic and bioequivalence parameters of cefuroxime after an oral administration of 500 mg cefuroxime tablet to 36 healthy male volunteers.  相似文献   

16.
A specific ultra-performance liquid chromatography–mass spectrometry (UPLC–MS) method was developed for the simultaneous determination of puerarin, daidzein, baicalin, wogonoside and liquiritin in rat plasma. Chromatographic separation was performed on a C18 column packed with 1.7 μm particles by a linear gradient elution. The analytes and carbamazepine (internal standard, I.S.) were monitored in a selected-ion reaction (SIR) mode with a positive electrospray ionization (ESI) interface by the following ions: m/z 417.2 for puerarin, m/z 255.2 for daidzein, m/z 271.0 for baicalin, m/z 461.0 for wogonoside, m/z 441.0 for liquiritin and m/z 237.2 for carbamazepine (I.S.), respectively. The calibration curves of these analytes were linear over the concentration ranges from 0.00254–1.02 μg mL?1 to 0.0102–10.2 μg mL?1. Within-batch and between-batch precisions (RSD%) were all within 15% and accuracy (RE%) ranged from ?10% to 10%. The extraction recoveries were on average 79.8% for puerarin, 90.8% for daidzein, 74.4% for baicalin, 70.2% for wogonoside and 84.7% for liquiritin. The validated method was successfully applied to investigate the pharmacokinetics of five bioactive compounds of GegenQinlian decoction (GQD) in rats.  相似文献   

17.
To eliminate the diastereomer interference on Telcagepant (MK-0974) determination during clinical study support, on-line high turbulent-flow liquid chromatography (HTLC) methods, HTLC-A and HTLC-B that covered dynamic range of 0.5–500 nM and 5–5000 nM, respectively, were developed. To meet the requirement of rapid assay transfer among multiple laboratories and analysts, a solid-phase extraction (SPE) assay was derived from the existing HTLC-B assay under the same dynamic range. The on-line HTLC assays were achieved through direct injection of plasma samples, extraction of analyte with a Cohesive C18 column (50 mm × 0.5 mm, 50 μm), followed by HPLC separation on a FluoPhase RP column (100 mm × 2.1 mm, 5 μm) and MS/MS detection. The off-line SPE assay used Waters Oasis®HLB μElution plate to extract the analytes from plasma matrix before injecting on a FluoPhase RP column (150 mm × 2.1 mm, 5 μm) for LC–MS/MS analysis. Under both on-line and off-line assay conditions, the diastereomer 1c was chromatographically separated from MK-0974. Cross-validation with the pooled samples demonstrated that both on-line and off-line assays provided comparable data with a difference of <2.6%. The assays were proved to be specific, accurate and reliable, and have been used to support multiple clinical studies. The pros and cons of on-line and off-line assays with regard to man power involved in sample preparation, total analysis time, carryover, cost efficiency, and the requirement for assay transfer are discussed.  相似文献   

18.
We herein describe the development of an LC–MS method for simultaneous determination of astilbin and 3′-O-methylastilbin in rat plasma. A simple liquid–liquid extraction procedure was followed by injection of the extracts on to a Shim-pack C18 column (150 mm × 2.0 mm I.D., 5 μm) with gradient elution and detection in negative ionization mode. Initially, the method was validated regarding linearity, accuracy and precision. The correlation coefficients of all the calibration curves showed good linearity (r > 0.999) within test ranges, and the relative deviation was less than 10% for intra- and inter-day assays. Besides, this method was also validated for its stability, extraction efficiency, matrix effect and so on. Finally, this proposed method was successfully applied to rat pharmacokinetic study and yielded the most comprehensive data on systemic exposure of them to date.  相似文献   

19.
Two LC-ESI–MS and CID-MS/MS methods were developed and validated for pharmacokinetic studies of the novel oral taxane derivatives IDN 5738 and IDN 5839, used for preclinical evaluation in mice. The analysis requires 100 μL of plasma sample, involves the addition of an internal standard and protein precipitation with 0.1% HCOOH in acetonitrile. The HPLC separation was obtained on Sunfire C18 column and Selected Reaction Monitoring technique was used to quantify the taxanes. The recoveries were more than 90%; the methods were linear over the validated concentrations range of 25–1500 ng/mL for IDN 5738 and 25–5000 ng/mL for IDN 5839 and had a limit of detection of 0.14 and 0.25 ng/mL, respectively. The inter-day coefficient of variation (CV%) of the calibration standards ranged between 1.3 and 7.2% for IDN 5738 and between 0.0 and 9.0% for IDN 5839 and the mean accuracy was in the range 85.3–112.0% for IDN 5738 and between 80.0 and 111.0% for IDN 5839. Moreover, analysing quality control plasma samples on three different days, the methods resulted precise and accurate showing intra- and inter-day CV within 12% for both analytes, and accuracy of 92.0–113.3% and 85.9–105.7% for IDN 5738 and IDN 5839, respectively. With these methods, we studied for the first time, the pharmacokinetics of the two taxanes showing for both, good oral bioavailability (>50%).  相似文献   

20.
A rapid, sensitive and selective ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method with hydrophilic interaction chromatography has been developed and validated for the simultaneous determination of didanosine and valdidanosine (L-valine amino acid ester prodrug of didanosine) in rat plasma. Solid-phase extraction (SPE) column was employed to extract the analytes from rat plasma, with high extraction recovery (>85%) for both didanosine and valdidanosine. The analytes were then separated by hydrophilic interaction chromatography (HILIC column) and detected by a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source. The method was linear over the concentration ranges of 2–20,000 ng/mL for didanosine and 4–300 ng/mL for valdidanosine. The lower limit of quantitation (LLOQ) of didanosine and valdidanosine was 2 and 4 ng/mL, respectively. The intra-day and inter-day relative standard deviation (RSD) were less than 15% and the relative errors (RE) were all within 15%. Finally, the validated UPLC–MS/MS method was successfully applied to the pharmacokinetic study after either didanosine or valdidanosine orally administrated to the Sprague–Dawley rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号