首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular endothelial cells (ECs) are usually difficult to culture in a large scale because of their complicated requirements for cell growth. As the vascular endothelial growth factor (VEGF) is a key growth factor in the EC culture, we transfected human umbilical vein endothelial cells (HUVEC) using a plasmid containing VEGF gene and let them grow in a culture medium eliminated an important supplement, endothelail cell growth supplement (ECGS). The expression of VEGF by HUVEC tansfected with VEGF gene was not enough to stimulate the growth of HUVEC, only 40% of maximum cell density obtainable in the presence of ECGS., However, when the culture medium was supplied with 2.5 ng/mL of basic fibroblast growth factor (bFGF), a synergistic effect of VEGF and bFGF was observed. In this case, the final cell density was recovered up to about 78% of maxium value.  相似文献   

2.
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) feature prominently in retinal neovascular diseases. Although the role of VEGF in retinal angiogenesis is well established, the importance of bFGF in this process requires further clarification. This study was undertaken to investigate the responses of retinal capillary cells (endothelial cells and pericytes) to bFGF under hypoxic conditions, as well as the potentially synergistic effects of bFGF and VEGF on the proliferation and cord formation of retinal endothelial cells. Cell proliferation was determined by cell number and by 3H-thymidine incorporation. Cord formation was assessed in three-dimensional gels of collagen type I. VEGF and bFGF increased 3H-thymidine incorporation by both cell types, an effect that was more pronounced in a hypoxic environment. Moreover, the proliferation of pericytes was stimulated to a greater extent by bFGF relative to VEGF. Endothelial migration in collagen gels, however, was induced more effectively by VEGF than by bFGF. A synergistic effect of VEGF and bFGF on cell invasion was observed in the collagen gel assay. VEGF and bFGF each augment proliferation of these cells, especially under hypoxia. We thus propose that these two cytokines have a synergistic effect at several stages of angiogenesis in the retina.  相似文献   

3.
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis.The processis regulated by NSC niche including neighbor cells such as vascular and glial cells.Since both vascular and glial cellssecrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF),we assessed the effect ofVEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonicstem cells.VEGF alone did not have any significant effect.When bFGF was added,however,VEGF stimulated NSCproliferation in a dose-dependent manner,and this stimulation was inhibited by ZM323881,a VEGF receptor (Flk-1)-specific inhibitor.Interestingly,ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF,suggestingthat VEGF autocrine plays a role in the proliferation of NSCs.The stimulatory effect of VEGF on NSC proliferationdepends on bFGF,which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphoryla-tion of ERK1/2.Collectively,this study may provide insight into the mechanisms by which mieroenvironmental nichesignals regulate NSCs.  相似文献   

4.
Xiao Z  Kong Y  Yang S  Li M  Wen J  Li L 《Cell research》2007,17(1):73-79
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.  相似文献   

5.
We have previously reported the existence of a synergistic interaction between vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in the induction of angiogenesisin vitro.Here we demonstrate that bFGF increases VEGF receptor-2 (VEGFR-2/Flk-1) expression: mRNA levels were increased by 4.5- to 8.0-fold and total protein by 2.0- to 3.5-fold, in bovine microvascular endothelial (BME), aortic endothelial (BAE), and transformed fetal aortic (GM7373) endothelial cells. VEGF itself did not affect VEGFR-2 expression, and neither bFGF nor VEGF altered expression of FGF receptor-1. We also show that synergism occurs at the level of proliferation when this is measured in a three-dimensional but not in a conventional two-dimensional assay. Differences in the level of VEGFR-2 expression were also observed when cells were grown on or within collagen gels under different conditions: mRNA levels were lowest under sparse conditions, increased 20- to 26-fold at confluence, and increased even further (57-fold) when cells were cultured in suspension in three-dimensional collagen gels. Finally, a synergistic increase was seen in the level of expression of urokinase and urokinase receptor mRNAs when cells were exposed to bFGF and VEGF for 4 days. These findings demonstrate that the level of VEGFR-2 expression can be modulated by environmental factors including cytokines and the geometry of the culture conditions and provide some insight into the mechanisms of synergism between bFGF and VEGF in the induction of angiogenesisin vitro.  相似文献   

6.
We report functional differences in constitutive and agonist-mediated endothelial barrier function between cultured primary and Clonetics human umbilical vein endothelial cells (pHUVEC and cHUVEC) grown in soluble growth factors and heparin. Basal transendothelial resistance (TER) was much lower in pHUVEC than in cHUVEC grown in medium supplemented with growth factors, such as basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), and human epithelial growth factor (EGF), and heparin. On the basis of a numerical model of TER, the increased basal TER in cHUVEC was due to effects on cell-matrix adhesion and membrane capacitance. Heparin and bFGF increased constitutive TER in cultured pHUVEC, and heparin mediated additional increases in constitutive TER in pHUVEC supplemented with bFGF. EGF attenuated bFGF-mediated increases in TER. On the basis of the numerical model, in contrast to cHUVEC, heparin and bFGF augmented TER through effects on cell-cell adhesion and membrane capacitance in pHUVEC. Thrombin mediated quantitatively greater amplitude and a more sustained decline in TER in cultured cHUVEC than pHUVEC. Thrombin-mediated barrier dysfunction was attenuated in pHUVEC conditioned in EGF in the presence or absence of heparin. Thrombin-mediated barrier dysfunction was also attenuated when monolayers were exposed to low concentrations of heparin and further attenuated in the presence of bFGF. cAMP stimulation mediated differential attenuation of thrombin-mediated barrier dysfunction between pHUVEC and cHUVEC. VEGF displayed differential effects in TER in serum-free medium. Taken together, these data demonstrate marked differential regulation of constitutive and agonist-mediated endothelial barrier function in response to mitogens and heparin stimulation.  相似文献   

7.
Vascular endothelial growth factor (VEGF), also known as vascular permeability factor or vasculotropin, is a recently characterized endothelial-specific mitogen which is angiogenic in vivo. Here we demonstrate that VEGF is angiogenic in vitro: when added to microvascular endothelial cells grown on the surface of three-dimensional collagen gels, VEGF induces the cells to invade the underlying matrix and to form capillary-like tubules, with an optimal effect at approximately 2.2nM (100ng/ml). When compared to basic fibroblast growth factor (bFGF) at equimolar (0.5nM) concentrations, VEGF was about half as potent. The most striking effect was seen in combination with bFGF: when added simultaneously, VEGF and bFGF induced an in vitro angiogenic response which was far greater than additive, and which occurred with greater rapidity than the response to either cytokine alone. These results demonstrate that like bFGF, VEGF induces an angiogenic response via a direct effect on endothelial cells, and that by acting in concert, these two cytokines have a potent synergistic effect on the induction of angiogenesis in vitro. We suggest that the synergism between VEGF and bFGF plays an important role in the control of angiogenesis in vivo.  相似文献   

8.
Cytochrome P-450 (CYP) epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acid (EET) regioisomers, which activate several signaling pathways to promote endothelial cell proliferation, migration, and angiogenesis. Since vascular endothelial growth factor (VEGF) plays a key role in angiogenesis, we assessed a possible role of EETs in the VEGF-activated signal transduction cascade. Stimulation with VEGF increased CYP2C promoter activity in endothelial cells and enhanced CYP2C8 mRNA and protein expression resulting in increased intracellular EET levels. VEGF-induced endothelial cell tube formation was inhibited by the EET antagonist 14,15-epoxyeicosa-5(Z)-enoicacid (14,15-EEZE), which did not affect the VEGF-induced phosphorylation of its receptor or basic fibroblast growth factor (bFGF)-stimulated tube formation. Moreover, VEGF-stimulated endothelial cell sprouting in a modified spheroid assay was reduced by CYP2C antisense oligonucleotides. Mechanistically, VEGF stimulated the phosphorylation of the AMP-activated protein kinase (AMPK), which has also been linked to CYP induction, and the overexpression of a constitutively active AMPK mutant increased CYP2C expression. On the other hand, a dominant-negative AMPK mutant prevented the VEGF-induced increase in CYP2C RNA and protein expression in human endothelial cells. In vivo (Matrigel plug assay) in mice, endothelial cells were recruited into VEGF-impregnated plugs; an effect that was sensitive to 14,15-EEZE and the inclusion of small interfering RNA directed against the AMPK. The EET antagonist did not affect responses observed in plugs containing bFGF. Taken together, our data indicate that CYP2C-derived EETs participate as second messengers in the angiogenic response initiated by VEGF and that preventing the increase in CYP expression curtails the angiogenic response to VEGF.  相似文献   

9.
To determine whether angiogenic growth factor levels are altered during and after cardiac surgery, plasma concentrations of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF) and transforming growth factor beta1 (TGFbeta1) were measured in 32 patients undergoing coronary artery bypass graft (CABG) surgery with extracorporeal circulation (ECC). EGF levels significantly decreased during ECC and remained low until the 24th post-operative hour with no difference between complicated and uncomplicated patients. TGFbeta1 and bFGF concentrations significantly increased at the end of ECC and after cross-clamp release, and returned to pre-operative values at the 6th post-operative hour suggesting that the source of these elevations are the lungs and heart. After cross-clamp release bFGF levels but not TGFbeta1 ones were higher in patients with respiratory impairments. VEGF values increased significantly at the 6th and 24th post-operative hours. At the 24th post-operative hour plasma VEGF levels were higher in patients with cardiovascular and hematological impairments. In conclusion, these results highlight that the angiogenic network is profoundly altered in patients undergoing cardiopulmonary bypass as previously demonstrated for lipidic, cytokine and haematopoietic growth factor ones and identify an association between specific post-CABG complications and systemic release of bFGF and VEGF.  相似文献   

10.
Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms.  相似文献   

11.
The growth of capillary endothelial cells (BCE) is an important regulatory step in the formation of capillary blood vessels. In vivo, the proliferation of these cells is stringently controlled. In vitro they can be stimulated by polypeptide growth factors, such as acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF). Since bFGF is synthesized and stored by vascular endothelial cells, this mitogen may play an important role in an autocrine growth regulation during angiogenesis. Here, evidence is presented for induction of the mRNA of bFGF by bFGF itself. A similar increase of bFGF mRNA was observed in response to thrombin and after treatment with phorbol ester. These results suggest that an autocrine loop may exist that may serve to modulate the mitogenic response in BCE under various physiological conditions, (e.g., wound healing and new capillary formation).  相似文献   

12.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

13.
14.
15.
Anti‐angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain–hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion‐associated domain in MUC4 and other proteins (AMOP) domain at the C‐terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C‐terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)‐basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF‐stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase‐dependent pathway. ISM binds to αvβ5 integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmen‐tal vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis.  相似文献   

16.
Endothelial cells (EC) are in contact with the underlying smooth muscle cells (SMC). The interactions between EC and SMC in the vessel wall are considered to be involved in the control of growth and function of blood vessels. A co-culture system of EC and SMC and a method for separation of these cells was developed in order to investigate whether the presence of physical contact between EC and SMC affected the gene expression of angiogenic factors. Human EC and SMC were prepared from the great saphenous veins. Autologous EC were added on top of the confluent layer of SMC. After 72 h in co-culture, the EC were magnetically separated from SMC with the use of superparamagnetic beads. RT-PCR products for bFGF, bFGFR, VEGF, PDGF-AA, PDGF-BB, TGF-beta, and beta-actin were analyzed to study the mRNA expressions. The protein level of selected factors was studied by ELISA technique. In co-cultured SMC there was a statistically significant higher gene expression of VEGF, PDGF-AA, PDGF-BB, and TGF-beta and significant lower gene expression of bFGF and its receptor than in single cultured SMC. The protein level of PDGF-BB and TGF-beta was also significantly higher in co-cultured SMC. In co-cultured EC there were no significant differences in gene expression of PDGF-AA, PDGF-BB, and TGF-beta compared with single cultured EC. The gene expression and protein synthesis of VEGF was significantly higher in co-cultured EC. The findings from the present study suggest that cell-cell interactions of EC and SMC affect the gene and protein expression of angiogenic factors.  相似文献   

17.
Anchorage-independent growth, i.e., growth in semi-solid medium is considered a marker of cellular transformation of fibroblast cells. Diploid human fibroblasts ordinarily do not exhibit such growth but can grow transiently when medium contains high concentrations of fetal bovine serum. This suggests that some growth factor(s) in serum is responsible for anchorage-independent growth. Much work has been done to characterize the peptide growth factor requirements of various rodent fibroblast cells for anchorage-independent growth; however, the requirements of human fibroblasts are not known. To determine the peptide growth factor requirements of human fibroblasts for anchorage-independent growth, we used medium containing serum that had had its peptide growth factors inactivated. We found that either platelet-derived growth factor (PDGF) or the basic form of fibroblast growth factor (bFGF) induced anchorage-independent growth. Epidermal growth factor (EGF) did not enhance the growth induced by PDGF, or did so only slightly. Transforming growth factor beta (TGF-beta) decreased the growth induced by PDGF. EGF combined with TGF-beta induced colony formation in semi-solid medium at concentrations at which neither growth factor by itself was effective, but the combination was much less effective in stimulating anchorage-independent growth than PDGF or bFGF. This work showed that PDGF, or bFGF, or EGF combined with TGF-beta can stimulate anchorage-independent growth of nontransformed human fibroblasts. The results support the idea that cellular transformation may reduce or eliminate the need for exogenous PDGF or bFGF.  相似文献   

18.
Proper bone remodeling requires an active process of angiogenesis which in turn supplies the necessary growth factors and stem cells. This tissue cooperation suggests a cross‐talk between osteoblasts and endothelial cells. This work aims to identify the role of paracrine communication through vascular endothelial growth factor (VEGF) in co‐culture between osteoblastic and endothelial cells. Through a well defined direct contact co‐culture model between human osteoprogenitors (HOPs) and human umbilical vein endothelial cells (HUVECs), we observed that HUVECs were able to migrate along HOPs, inducing the formation of specific tubular‐like structures. VEGF165 gene expression was detected in the HOPs, was up‐regulated in the co‐cultured HOPs and both Flt‐1 and KDR gene expression increased in co‐cultured HUVECs. However, the cell rearrangement observed in co‐culture was promoted by a combination of soluble chemoattractive factors and not by VEGF165 alone. Despite having no observable effect on endothelial cell tubular‐like formation, VEGF appeared to have a crucial role in osteoblastic differentiation since the inhibition of its receptors reduced the co‐culture‐stimulated osteoblastic phenotype. This co‐culture system appears to enhance both primary angiogenesis events and osteoblastic differentiation, thus allowing for the development of new strategies in vascularized bone tissue engineering. J. Cell. Biochem. 106: 390–398, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
In this study characterization of endothelial cells differentiated from human bone marrow mesenchymal stem cells (hBMCs) was investigated in relation to their capillary network formation potential. Differentiation was performed in presence of vascular endothelial growth factor (VEGF) and insulin like growth factor-1 (IGF-1). A panel of cellular and molecular markers was used for characterization of the endothelial cells. The cells were strongly positive for von Willebrand factor (vWF) and vascular endothelial growth factor receptor 2 (VEGFR2) when measured at protein and mRNA levels. Development of endothelial cells was found to be associated with formation of typical organelles such as Weibel Palade (WP) bodies, Cavealae and pinocytic vesicles. Early vessel growth was also evidenced by showing specific junctions between the cells. The migratory and angiogenic properties of the cells were confirmed by showing capillary network formation in vitro. These results indicate that the capacity of endothelial cells differentiated from hBMSCs in formation of vascular system is consistent with molecular and structural development.  相似文献   

20.
1. Which angiogenic growth factors actually mediate tumor growth in ethylnitrosourea (ENU)-induced gliomas in rats was examined.2. In situ hybridization histochemistry with digoxigenin-labeled oligonucleotide probes was used to investigate the cellular expression and distribution of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) mRNAs in ENU-induced gliomas.3. Both VEGF and bFGF mRNAs were not detected in normal gial cells but in ENU-induced glioma cells.4. Our results suggest that the growth of ENU-induced glioma may be regulated by multiple angiogenic growth factors and that these gliomas may proliferate by synthesizing such growth factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号