首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Steroidal fatty acid esters   总被引:1,自引:0,他引:1  
Several years ago we discovered an unexpected family of steroidal metabolites, steroidal fatty acid esters. We found that fatty acid esters of 5-ene-3β-hydroxysteroids, pregnenolone and dehydroisoandrosterone are present in the adrenal. Subsequently, others have shown the existence of these non-polar 5-ene-3β-hydroxysteroidal esters in blood, brain and ovaries. Currently, almost every family of steroid hormone is known to occur in esterified form. We have studied the esters of the estrogens and glucocorticoids in some detail, and have found that these two steroidal families are esterified by separate enzymes. In a biosynthetic experiment performed simultaneously with estrodiol and corticosterone, we established that the fatty acid composition of the steroidal esters is quite different. The corticoid is composed predominantly of one fatty acid, oleate, while the estradiol esters are extremely heterogeneous. Our studies have demonstrated that the estrogens are extremely long-lived hormones, that they are protected by the fatty acid from metabolism. They are extremely potent estrogens, with prolonged activity. Esterification appears to be the only form of metabolism that does not deactivate the biological effects of estradiol. We have demonstrated the biosynthesis of fatty acid esters of estriol, monoesters at both C-16 and C-17β. They too are very potent estrogens. These fatty acid esters of the estrogens are the endogenous analogs of estrogen esters, like benzoate, cypionate, etc., which have been used for decades, pharmacologically because of their prolonged therapeutic potency. We have found that the estradiol esters are located predominantly in hydrophobic tissues, such as fat. Sequestered in these tissues, they are an obvious reservoir of estrogenic reserve, requiring only an esterase for activation. To the contrary the biological activity of the fatty acid esters of the glucocorticoid, corticosterone, is not different from that of its free parent steroid. We have shown that the rapid kinetics of its induction of gluconeogenic responses is caused by its labile C-21 ester which is rapidly hydrolyzed by esterase enzymes. While it appears that the physiological role of the estrogen esters may be related to their long-lived hormonal activity, the role of the other families of steroidal esters is not yet apparent. They, and perhaps the estrogen esters as well, must serve other purposes. Indeed they may serve important biological functions beyond those which we ordinarily associate with steroid hormones.  相似文献   

2.
The biosynthesis of the fatty acid esters of the corticoid (corticosterone) and estrogen (estradiol) was compared in parallel incubations of corticosterone and estradiol with several tissues of the rat. The fatty acid composition of the esters of the two steroids was characterized in mammary and uterine tissue. In both of these tissues, the esters of estradiol were extremely heterogeneous. To the contrary, in the same tissues only one predominant ester of corticosterone, corticosterone-21-oleate, was formed. It comprised 70-80% of the total. The oleate ester of estradiol accounted for only 20% of the esters of this estrogen. In addition, fatty acid esters of an A-ring reduced metabolite of corticosterone, 5 beta-dihydrocorticosterone, was also identified. Its fatty acid composition is identical to that of corticosterone. In other experiments the fatty acid esters of both steroids were isolated from several tissues and quantified. When the amount of steroidal ester formed was compared, there was over a 100-fold difference among the various tissues in the ratio of estradiol to corticosterone ester synthesized. Thus, the rate of synthesis of the fatty acid esters of each class of steroid varies dramatically from tissue to tissue, and their fatty acid composition differs markedly as well. If the same enzyme synthesized both the estrogen and corticoid esters, then it would be expected that the relative amount of both esters synthesized in various tissues should be constant and likewise that their composition should be the same. Since neither occurred, these results suggest that the enzyme which produces the C-17 fatty acid esters of the estrogens may be different from the one which synthesizes the C-21 esters of the corticoids. The existence of separate enzyme systems for the synthesis of the fatty acid esters of these steroid hormones opens the possibility of specific physiological controls of each of these unusual steroidal metabolites.  相似文献   

3.
Biological esterification with fatty acids is a feature that is now known to be common to most steroids. The esterification of estradiol in the D-ring at the 17 beta-hydroxyl leads to a family of extremely active estrogens. Similarly, esterification of the weaker estrogen, estriol (E3), has an even greater impact on its hormonal potency. We have recently shown that synthetic long chain esters of E3 at either 16 alpha- or 17 beta- are highly potent estrogens. The estrogenic activity of the synthetic E3 esters led us to determine whether E3 is biologically esterified, and if so, to characterize the resulting esters. Incubation of E3 with rat lung, a tissue which is highly active in esterifying estradiol, produces a nonpolar metabolite which upon saponification is converted back into E3. There was no evidence for the formation of a diester. Purification by high performance liquid chromatography separates the non-polar metabolite into two peaks, one the C-16 alpha- (approximately 60%) and the other the C-17 beta-ester (approximately 40%). The two fractions were further purified and characterized; each is a mixture of fatty acid esters of E3. The composition of the C-16 alpha- and the C-17 beta-fatty acid esters of E3 is identical. The predominant fatty acids are arachidonate, 34%, palmitate, 26%, followed by oleate 14%, linoleate 13%, stearate 8%, and palmitoleate 5%. The similarity of the esters at C-16 and C-17 may indicate that the fatty acid precursor for the acyltransferase is the same for both hydroxyl groups. It may also suggest that the same enzyme esterifies both positions in the D-ring. Since synthetic estriol fatty acid esters are extremely potent and long-lived estrogens, the enzymatic esterification of estriol produces powerful estrogens with considerable physiological potential.  相似文献   

4.
Formation of lipoidal steroids in follicular fluid   总被引:1,自引:0,他引:1  
The presence of high levels of lipoidal pregnenolone in follicular fluid has recently been established although no evidence has been presented concerning its possible origin. The following investigation focuses on the enzymatic conversion of non-conjugated steroids into their lipoidal derivatives in preovulatory follicular fluid obtained from women undergoing in vitro fertilization. Our observations indicated that pregnenolone, an important precursor steroid, was acylated at a similar rate as cholesterol in follicular fluid. Similar studies were subsequently conducted with serum obtained from a pool of normal women and women undergoing follicular stimulation which showed little difference to the results obtained in follicular fluid. Further studies using dehydroepiandrosterone, androst-5-ene-3 beta,17 beta-diol, estradiol and dihydrotestosterone were were also performed to monitor their respective lipoidal conversion percentages in follicular fluid which revealed a marked difference of conversion rates between steroids. The indirect identification of the lipoidal pregnenolone derivatives formed in follicular fluid was also conducted by incubating radiolabelled pregnenolone in follicular fluid. The fatty acid components of the resulting lipoidal pregnenolone derivatives showed a marked resemblance to those of cholesteryl esters formed in plasma by the enzymatic activity of lecithin:cholesterol acyltransferase. The pregnenolone derivatives were comprised predominantly of unsaturated fatty acids such as linoleate, palmitoleate, oleate, linolenate and arachidonate while saturated fatty acids, namely palmitate, constituted 20% of the total lipoidal pregnenolone.  相似文献   

5.
The C-17 fatty acid esters of estradiol, known as the lipoidal derivatives of estradiol, LE2, are metabolites of estradiol that were originally isolated from various tissues after in vitro incubations with estradiol. These steroidal esters are active estrogens with extremely prolonged potencies. The present study investigates the existence of LE2 in human blood using a radiochemical isotope dilution technique. The LE2 fraction from blood was isolated, saponified, and the hydrolyzed estradiol was then acetylated with [3H]acetic anhydride. It was found that 3H was incorporated into estradiol diacetate, demonstrating that LE2 is present in human blood. Thus these steroidal esters represent a new class of endogenous estrogens which have not been previously considered in the physiology of the female sex steroids.  相似文献   

6.
Estrogenic action of estriol fatty acid esters   总被引:1,自引:0,他引:1  
Recent studies suggest that, estriol, like estradiol, is biosynthetically esterified with fatty acids. We have synthesized the stearate estriol, at C-16 alpha, C-17 beta and the diester, C-16 alpha,17 beta and tested these D-ring esters for their estrogenic action both in vivo and in vitro, comparing them to estradiol, estriol and estradiol-17-stearate. None of the estriol esters bind to the estrogen receptor. They are only weakly estrogenic in a microtiter plate estrogen bioassay: stimulation of alkaline phosphatase in the Ishikawa endometrial cells. However, both estriol monoesters are extremely potent estrogens when injected subcutaneously (in aqueous alcohol) into ovariectomized mice. Compared to the free steroids, they produced a dramatically increased uterine weight with a greatly prolonged duration of stimulation. The 16 alpha,17 beta-diester also induced a protracted uterotrophic response, but the stimulation of uterine weight was comparatively low. Since the esters of estradiol and estriol do not bind to the estrogen receptor, their estrogenic signal must be generated through the action of esterase enzymes. These naturally occurring esters have the potential of being extremely useful pharmacological agents for long-lived estrogenic stimulation.  相似文献   

7.
Human plasma lipoproteins have strong hydrophobic interactions with steroids and their fatty acyl derivatives such as estradiol fatty acyl esters. In this work, affinity capillary electrophoresis with the partial filling technique was applied to study the hydrophobic interactions between lipoproteins, which are nanometer-sized particles, and nonconjugated steroids. The capillaries were first rinsed with one of two novel poly(vinylpyrrolidone) (PVP)-based cationic copolymers that were strongly adsorbed onto the fused-silica surface via electrostatic interactions. This surface treatment greatly suppressed the adsorption of lipoproteins. Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) particles were then employed in the coated capillaries as pseudostationary phase in the partial filling mode. The changes in corrected migration times of steroids increased linearly with the filling time of the lipoproteins. The affinity constants between the steroids and lipoproteins were calculated, and the most hydrophobic steroid studied, progesterone, had stronger affinity than testosterone or androstenedione toward both LDL and HDL. Affinity between steroids and LDL was stronger than that between steroids and HDL. Interactions between the steroids and lipoproteins were mainly nonspecific with particle lipid components, whereas some were site specific with the apolipoproteins. The developed technique has great potential for determination of the affinity of various compounds toward lipoproteins.  相似文献   

8.
Three spin-labeled derivatives of stearic acid and two derivatives of palmitic acid have been used to study the structure of the strong fatty acid binding site of bovine serum albumin. The steroid and indole binding sites have been studied using spin-labeled derivatives of androstol and indole, respectively. Paramagnetic resonance and fluorescence quenching data suggest that the fatty acid, steroid, and indole binding sites may be identical. The mobility of the nitroxyl group at C-8 of palmitic acid bound to albumin at a 1:1 molar ratio is unaffected when the carboxyl group is esterified. When the nitroxyl group is located at C-5 on this acid its motion is detectably increased by esterification of the carboxyl group but the magnitude of this change is small. This result suggests that the carboxyl group may play a minor role in the binding of fatty acids to the strongest fatty acid binding site of albumin. When stearic acid derivatives bearing the nitroxide at C-5, C-12, and C-16 are bound to albumin at a ligand to albumin ratio of 1, the order of mobility at 0-30 degrees is C-16 greater than C-12 congruent to C-5. Although motion at the methyl terminus is always greater than at the COOH terminus in the range 0-60 degrees, a simple monotonic increase in chain motion between the two termini is not observed. Arrhenius plots of the motion parameters for these bound fatty acids show two abrupt changes in slope. The temperature ranges for these changes are 15-23 degrees and 38-45 degrees. These results suggest that when one mole of spin-labeled fatty acid is bound to albumin, the protein undergoes a conformational change in each of these temperature ranges.  相似文献   

9.
Recently, several natural steroids have been found to be esterified to long-chain fatty acids (FAE) in various mammalian tissues. The purpose of the present study was to determine the ability of a series of 3H-labeled steroids to serve as substrates for the formation and accumulation of such non-polar derivatives in intact cells, using the hormone-responsive ZR-75-1 human breast cancer cell line as model. All 14 steroids tested were found to be converted, directly or following further metabolism, to lipoidal ester derivatives. The percentage of intracellular steroids recovered as FAE derivatives was usually substantial (14-90%), especially in the case of C-19 steroids (75-90%). The composition of the lipoidal steroid fractions recovered from the labeled cell extracts was characterized by chromatographic comparison with synthetic steroid FAEs and by saponification of the steroid FAEs and identification of the released steroidal moieties. Following metabolism, most steroid substrates were converted into multiple lipoidal esters. Furthermore, 5 alpha-androstane-3 alpha, 17 beta-diol, 5 alpha-androstane-3 beta, 17 beta-diol, as well as androst-5-ene-3 beta, 17 beta-diol formed lipoidal diesters in addition to the monoester form. The high level of intracellular steroid FAE accumulation reported in this study suggests that these yet poorly known steroid derivatives may play important functions in the regulation of steroid hormone metabolism and action.  相似文献   

10.
C-17 fatty acid esters of estradiol are naturally occurring biosynthetic metabolites of estradiol. A representative component of this family of esters, estradiol-17-stearate, was studied in order to determine the estrogenic properties of these unusual hydrophobic steroids. Following the classical estrogen bioassay, a solution of this ester in oil was injected subcutaneously into immature rats once a day for 3 days. There was little effect on the uterus on the first day after the third injection. However, on subsequent days a large stimulation of uterine growth occurred. The course of this estrogenic effect was exactly opposite to that obtained with estradiol. In order to eliminate the possibility that this effect on the time course of estrogenic stimulation was caused by increased solubility of the hydrophobic esters in the carrier oil, the steroids were administered to adult ovariectomized animals in aqueous medium via a single intravenous injection. The uterotrophic response to estradiol was maximal at 12 h and was completely dissipated in 48-60 h. Estradiol-17-stearate produced a uterotrophic effect of twice the duration of estradiol. In the immature rat, aqueous intravenous injections of estradiol-17-stearate produced a greater uterotrophic effect than estradiol and this effect was still maximal 96 h later. In addition, this single injection of estradiol-17-stearate advanced the time of vaginal opening, a marker for puberty in the female rat. The mechanism of the prolonged estrogenic stimulation was investigated by studying the steroidal content of the uterus after injecting [3H]estradiol and [3H]estradiol-17 -stearate i.v. into immature rats. At 1 and 4 h there was significantly more radioactivity in the uteri of the [3H]estradiol treated animals. At later times (8 h and onwards) the total radioactivity in the uterus did not differ appreciably between the two groups. However at these later times, the amount of [3H]estradiol was far greater in the uteri of animals receiving [3H]estradiol-17-stearate. Consequently, the prolonged estrogenic effects of the endogenous C-17 fatty acid esters of estradiol are caused by the increased duration of the estrogenic signal. It is hypothesized that one of the roles of the fatty acid is to protect the steroid nucleus from metabolism and thereby prolong the life of the parent C18 steroid. Thus, the results of these experiments are consistent with the family of endogenous alkyl esters of estradiol having a physiological role as long-acting estrogens.  相似文献   

11.
A new sample preparation method coupled to GC-MS analysis was developed and validated for quantification of sulfate esters of pregnenolone (PREG-S) and dehydroepiandrosterone (DHEA-S) in rat brain. Using a solid-phase extraction recycling protocol, the results show that little or no PREG-S and DHEA-S (<1 pmol/g) is present in rat and mouse brain. These data are in agreement with studies in which steroid sulfates were analyzed without deconjugation. We suggest that the discrepancies between analyses with and without deconjugation are caused by internal contamination of brain extract fractions, supposed to contain steroid sulfates, by lipoidal forms of PREG and DHEA (L-PREG and L-DHEA, respectively). These derivatives can be acylated very efficiently with heptafluorobutyric anhydride and triethylamine, and their levels in rodent brain (approximately 1 nmol/g) are much higher than those of their unconjugated counterparts. They are distinct from fatty acid esters, and preliminary data do not favor structures such as sulfolipids or sterol peroxides. Noncovalent interactions between steroids and proteolipidic elements, such as lipoproteins, could account for some experimental data. Given their abundance in rodent brain, the structural characterization and biological functions of L-PREG and L-DHEA in the central nervous system merit considerable attention.  相似文献   

12.
Somdatta Deb 《Steroids》2010,75(10):740-744
We report the rapid synthesis (1 min) in high yield of fatty acid ester (FAE) derivatives of several steroids under microwave irradiation in an ionic liquid (IL). An expedient regioselective hydrolysis at C-3 of estradiol diesters is also reported.  相似文献   

13.
P H Jellinck  J Fishman 《Biochemistry》1988,27(16):6111-6116
Estradiol and 2-hydroxyestradiol labeled with 3H at different positions in rings A or B were incubated with male rat liver microsomes, and their oxidative transformation was followed by the transfer of 3H into 3H2O. 14C-labeled estrogen or catechol estrogen was used to determine the fraction that becomes bound covalently to microsomal protein. The further metabolism of 2-hydroxyestradiol involves activation of the steroid at C-4 and, to a much lesser extent at C-1, by a cytochrome P-450 mediated reaction as indicated by the effects of NADPH, spermine, SKF-525A, and CO in the microsomal system. Glutathione promoted the loss of 3H from C-4 of either estradiol or 2-hydroxyestradiol but had less effect on this reaction at C-1 and inhibited it at C-6,7. It also abolished the irreversible binding of 14C-labeled estradiol and 2-hydroxyestradiol to microsomal protein. NADPH was needed specifically for glutathione to exert its effect both on the transfer of 3H into 3H2O and on the formation of water-soluble products from catechol estrogen by rat liver microsomes. It could not be replaced by NADP, NAD, or NADH. Ascorbic acid inhibited these enzymatic reactions but did not affect significantly the initial 2-hydroxylation of estradiol. Evidence is also provided for the further hydroxylation of 2-hydroxyestradiol at C-6 (or C-7). These results indicate that cytochrome P-450 activates catechol estrogens by an electron abstraction process.  相似文献   

14.
Pregnenolone- (PREG-), and dehydroepiandrosterone- (DHEA-) fatty acid esters (FA) are present in human plasma, where they are associated with lipoproteins. Because plasma has the ability to form PREG-FA and DHEA-FA in vitro from their unconjugated steroid counterparts, we postulated that the LCAT enzyme might be responsible for their formation. Here we show that lecithin-cholesterol acyltransferase (LCAT) has PREG and DHEA esterifying activities. First, VLDL, IDL, LDL, and HDL were isolated by the sequential ultracentrifugation micromethod from the plasma of fasting men and women and tested for their ability to form PREG-FA, DHEA-FA, and cholesteryl esters in vitro from their respective unconjugated counterparts. The results showed that the three steroids were esterified only in HDL subfractions. The rate of tritiated PREG esterification was clearly higher than that of tritiated cholesterol and DHEA, both in total plasma and isolated HDL, and no gender difference was observed. Second, human and guinea pig LCAT were purified and used in phosphatidylcholine-reconstituted vesicles containing human apoAI to show their ability to esterify tritiated cholesterol, PREG, and DHEA in the absence of unlabeled steroid. The amount of cholesteryl ester, PREG-FA, and DHEA-FA increased after incubation as a function of time and amount of purified LCAT, showing that PREG is preferentially acylated by LCAT compared to cholesterol and DHEA. The PREG and DHEA esterifying activities of LCAT were cofactor-dependent, as shown by the absence of acylation without apoAI. Finally, we determined by HPLC the fatty acid moiety of PREG-GA and DHEA-FA formed in human plasma and guinea pig and rat sera in vitro after incubation with unconjugated tritiated PREG and DHEA. We showed that the fatty acid moieties of newly formed tritiated PREG-FA and DHEA-FA were similar to that reported for cholesteryl esters in the plasma of the three species. We conclude that LCAT has a lecithin-steroid acyltransferase activity and that PREG is probably the preferential substrate of this enzyme. In addition, the fact that the differences in the fatty acid moieties of cholesteryl esters of human, guinea pig, and rat plasmas are also observed for PREG-FA and DHEA-FA suggests that the LCAT is the sole circulating enzyme that has PREG and DHEA esterifying activities.  相似文献   

15.
Steroid hormones share a very similar structure, but they behave distinctly. We present structures of human estrogenic 17beta-hydroxysteroid dehydrogenase (17beta-HSD1) complexes with dehydroepiandrosterone (DHEA) and dihydrotestosterone (DHT), providing the first pictures to date of DHEA and DHT bound to a protein. Comparisons of these structures with that of the enzyme complexed with the most potent estrogen, estradiol, revealed the structural basis and general model for sex hormone recognition and discrimination. Although the binding cavity is almost entirely composed of hydrophobic residues that can make only nonspecific interactions, the arrangement of residues is highly complementary to that of the estrogenic substrate. Relatively small changes in the shape of the steroid hormone can significantly affect the binding affinity and specificity. The K(m) of estrone is more than 1000-fold lower than that of DHEA and the K(m) of estradiol is about 10 times lower than that of DHT. The structures suggest that Leu-149 is the primary contributor to the discrimination of C-19 steroids and estrogens by 17beta-HSD1. The critical role of Leu-149 has been well confirmed by site-directed mutagenesis experiments, as the Leu-149 --> Val variant showed a significantly decreased K(m) for C-19 steroids while losing discrimination between estrogens and C-19 steroids. The electron density of DHEA also revealed a distortion of its 17-ketone toward a beta-oriented form, which approaches the transition-state conformation for DHEA reduction.  相似文献   

16.
Characterization of the chemical form and stereo-specificity of the fatty acid derivatives of arachidonic and linoleic acid in psoriatic epidermis is needed to define the enzymatic origin of these compounds and their possible role in pathogenesis. In an analysis of psoriatic skin scales, both free and esterified 13-hydroxyoctadecadienoic acids were the principal fatty acid derivatives, present in mean concentrations of 115 and 17 ng/mg scales, respectively. The analysis included reversed-phase high performance liquid chromatography of the free acid and of its methyl ester, gas chromatography, gas-liquid chromatography-mass spectrometry of the methyl ester derivatives, and chiral separation. The free and esterified 13-hydroxyoctadecadienoic acids isolated from the psoriatic scales contained a mixture of the S/R stereoisomers, averaging 1.9:1 for free 13- hydroxyoctadecadienoic acid. These findings are not compatible with the strict S-stereospecificity for oxygen insertion exhibited by mammalian lipoxygenase but rather could point to the action of a cyclooxygenase. The demonstration that a hydroxylated fatty acid derivative is esterified in vivo in psoriatic keratinocytes suggests that the physiology of these cells may be altered early in the process of keratinization.  相似文献   

17.
Estrogen fatty acid esters constitute a unique family of extremely hydrophobic hormonal derivatives which are exclusively transported in lipoprotein particles in plasma. In estradiol, the fatty acyl residues are conjugated at the 17beta-hydroxyl of the steroid D-ring, leaving the phenolic 3-hydroxyl group unsubstituted and, therefore, preserving antioxidative efficacy. The 17beta-fatty acid derivative of estradiol is proposedly an even more efficient antioxidant protecting LDL and HDL than the parent steroid. Previous studies have established that the enzyme lecithin:cholesterol acyltransferase which catalyzes the fatty acid esterification of 3beta-hydroxyl group of cholesterol, also catalyzes the formation of estrogen 17beta-esters. Estrone, the principal estrogen in the postmenopausal female, has a keto group at carbon-17 and has been thought unable to form fatty acid esters. However, we detected hydrophobic derivatives of estrone following incubations with human plasma and ovarian follicular fluid. These derivatives accumulated in HDL and LDL during incubation showing chemical characteristics similar to estrone-3-fatty acid esters. Liquid chromatographic-mass spectrometric analyses established the presence of unhydrolyzed estrone esters consisting of different fatty acid species, the major one being estrone-3-linoleate, in human HDL particles following incubation of estrone with plasma. These extremely hydrophobic estrone conjugates could, in theory, represent a storage form of this estrogen.  相似文献   

18.
Molluscs can conjugate a variety of steroids to form fatty acid esters. In this work, the freshwater ramshorn snail Marisa cornuarietis was used to investigate sex differences in endogenous levels of esterified steroids. Testosterone and estradiol were mainly found in the esterified form in the digestive gland/gonad complex of M. cornuarietis, and males had higher levels of esterified steroids than females (4-10-fold). Additionally, the ability of several xenobiotics, namely tributyltin (TBT), methyltestosterone (MT) and fenarimol (FEN) to interfere with the esterification of testosterone and estradiol was investigated. All three compounds induced imposex - appearance of male sexual characteristics in females. Exposure to TBT led to a decrease in both esterified testosterone (60-85%) and estradiol (16-53%) in females after 100 days exposure, but had no effect on males. Exposure to FEN and MT did not alter levels of esterified steroids in males or in females, although exposed females developed imposex after 150 days exposure. The decrease in esterified steroids by TBT could not be directly linked with a decrease in microsomal acyl-CoA:testosterone acyltransferase (ATAT) activity, which catalyzes the esterification of steroids. In fact, ATAT activity was marginally induced in organisms exposed to TBT for 50 days (1.3-fold), and significantly induced in males and females exposed to MT for 50 days (1.8- and 1.5-fold, respectively), whereas no effect on ATAT activity was observed after 150 days exposure.  相似文献   

19.
It has been shown that estrogens need to be metabolized to their hydrophobic estrogen ester derivatives to act as antioxidants in lipoproteins. Data suggest that 17beta-estradiol (E(2)) becomes esterified in LCAT-induced reactions and the esters are transported from HDL particles to LDL and VLDL particles by a CETP-dependent mechanism. In the present study we have further investigated the regulation of E(2) esterification by LCAT and focused on the importance of HDL structure and composition in the esterification process. Isolated LDL, HDL(2), HDL(3), and reconstituted discoidal HDL (rHDL) were incubated with labeled E(2), with and without purified LCAT, at 37 degrees C for 24 h. After purification of the lipoprotein fractions, there was a significant peak of radioactivity representing esterified estradiol attached to HDL(3) and rHDL, but HDL(2) and LDL contained only trace amounts of labeled estradiol ester. TLC analysis confirmed that the radioactivity migrated in a position corresponding to that of 17beta-E(2) 17-monoester standard. The amount of radioactivity associated with HDL(3) and rHDL representing esterified E(2) was significantly increased by addition of purified LCAT. However, only limited increases of radioactivity were observed in HDL(2) and LDL. In conclusion, HDL subfractions differ in their potential to regulate estradiol esterification by LCAT.  相似文献   

20.
We examined the effect of the docosahexaenoic acid (DHA) content of lipoproteins on their metabolism in vivo by a radioisotope labeling and tracking method. Purified HDL and LDL were labeled with (3)H-cholesteryl oleate tracer. To mimic dietary-related changes in fatty acid composition of lipoproteins, we incorporated lipids acylated with either DHA, arachidonic (AA) or oleic (OA) acid to phosphatidylcholine (didocosahexaenoylphosphatidylcholine (di22:6-PC), diarachidonoylphosphatidylcholine (di20:4-PC) and dioleoylphosphatidylcholine (di18:0-PC), respectively) into the purified particles. The lipids, at the amount added, did not cause detectable alterations in the morphology of the lipoproteins. Levels of radiotracers in blood and in several target tissues such as brain, heart, liver, muscle and adipose were determined at 1.5, 3 and 24h after intravenous injection into C57Bl/6J mice. No statistically significant differences were detected in the tissue distribution of tracers introduced into HDL enriched in DHA, compared to particles enriched with OA. In contrast, we found a significantly higher proportion of radiolabel associated with LDL enriched in DHA in heart, brown adipose and brain tissues. The uptake of labels associated with DHA containing LDL nearly doubled for heart and brown adipose tissues at 1.5 and 3h, and it was 30% higher for brain tissues at 24h. The tissue distribution of labels from the same particles enriched in AA or OA did not show a statistically significant difference from unaltered control lipoproteins. These findings point to the possible role of DHA in the regulation of LDL metabolism and involvement of the lipoproteins in transport of n-3 PUFA to target organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号