首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and all-trans-retinoic acid (trans-RA) are potent regulators of growth of cancer cells. In this study, we investigated the effect of TPA and trans-RA alone or their combination on proliferation of human breast cancer ZR75-1 and T47D and lung cancer H460 and H292 cell lines. trans-RA caused various degrees of growth inhibition of these cell lines. However, TPA showed inhibition of proliferation of H460 and H292 cells and induction of ZR75-1 cell growth. Although trans-RA did not significantly regulate the growth inhibitory effect of TPA, it completely prevented its growth stimulating function. The divergent effects of TPA were associated with specific disruption of cell cycle events, an induction of G(0)/G(1) arrest in H460 and H292 cells and inhibition of G(0)/G(1) arrest with increase of S phase in ZR75-1 cells. Induction of G(0)/G(1) arrest was accompanied by induction of p21(WAF1) and ERK activity, whereas inhibition of G(0)/G(1) arrest was associated with enhanced activity of JNK and AP-1 but not ERK. trans-RA did not affect TPA-induced p21(WAF1) expression. However, it inhibited TPA-induced AP-1 activity in ZR75-1 cells and the constitutive AP-1 activity in H460 and H292 cells. Thus, trans-RA modulates TPA activity through its interaction through TPA-induced JNK/AP-1 pathway but not TPA-induced ERK/p21(WAF1) pathway.  相似文献   

4.
5.
6.
7.
Cervical cancer is one of the leading killers for female worldwide. Nevertheless, the less knowledge of molecular mechanism for cervical cancer limited the improvement of treatment effects. High-mobility group box 2 (HMGB2) belongs to the HMGB family, which could play diverse roles in cell proliferation. This work mainly aimed to study the functions of HMGB2 on cervical cancer cells proliferation. HMGB2 was highly expressed in cervical cancer tissue. The results of real-time polymerase chain reaction and Western blot analysis showed that HMGB2 was expressed in all the five cervical cancer cells (HeLa, CaSki, SiHa, C-33A, and C4-1 cells). In addition, HMGB2 overexpression obviously improved cell viability and promoted cell cycle progression, which suggested that HMGB2 could promote proliferation of cervical cancer cells. Moreover, HMGB2 overexpression increased the level of p-AKT and reduced the levels of p21 and p27. However, HMGB2 downregulation had contrary influences on cell proliferation, cell cycle distribution and the levels of p-AKT, p21, and p27. Notably, LY294002, as an inhibitor of AKT signaling pathway, could significantly weaken the effects of HMGB2 overexpression, which indicated that HMGB2 might promote cell proliferation by activating AKT signaling pathway. Therefore, HMGB2 was hopeful to be a candidate as a new biomarker and therapy target for cervical cancer.  相似文献   

8.
STC1 is a glycoprotein hormone involved in calcium/phosphate (Pi) homeostasis. There is mounting evidence that STC1 is tightly associated with the development of cancer. But the function of STC1 in cancer is not fully understood. Here, we found that STC1 is down-regulated in Clinical tissues of cervical cancer compared to the adjacent normal cervical tissues (15 cases). Subsequently, the expression of STC1 was knocked down by RNA interference in cervical cancer CaSki cells and the low expression promoted cell growth, migration and invasion. We also found that STC1 overexpression inhibited cell proliferation and invasion of cervical cancer cells. Moreover, STC1 overexpression sensitized CaSki cells to drugs. Further, we showed that NF-κB p65 protein directly bound to STC1 promoter and activated the expression of STC1 in cervical cancer cells. Thus, these results provided evidence that STC1 inhibited cell proliferation and invasion through NF-κB p65 activation in cervical cancer.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The miR-302-367 cluster is specifically expressed in human embryonic stem cells and has been shown to convert human somatic cells into induced pluripotent stem cells. Here, we investigated the role of the miR-302-367 cluster in cervical carcinoma. The cluster was not endogenously expressed in cervical cancer cells, and its ectopic expression did not reprogram the cervical cancer cells to an embryonic stem cell-like state. However, ectopic expression of the miR-302-367 cluster in HeLa and SiHa cervical cancer cells inhibited cell proliferation and tumor formation by blocking the G1/S cell cycle transition. We identified a new cell cycle regulatory pathway in which the miR-302-367 cluster directly down-regulated both cyclin D1 and AKT1 and indirectly up-regulated p27Kip1 and p21Cip1, leading to the suppression of cervical cancer cell proliferation. Our findings suggest that the miR-302-367 cluster may be used as a therapeutic reagent for the treatment of cervical carcinoma.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号