首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J E Scheffler  M Cohn 《Biochemistry》1986,25(13):3788-3796
A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The nine resonance peaks observed in the CIDNP spectrum of yeast phosphoglycerate kinase have been assigned tentatively to five residues: histidines-53 and -151, tryptophan-310, and tyrosines-48 and -195. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Sedimentation equilibrium experiments with NADPH-cytochrome P-450 reductase showed that increasing 1-O-n-octyl-beta-D-glucopyranoside levels promoted disaggregation of the flavoprotein. The reductase was monomeric at a molar ratio of detergent to protein above 10(3). Addition of N3-carboxymethyllumiflavin to the flavoprotein in the presence of 1-O-n-octyl-beta-D-glucopyranoside results in photochemically induced dynamic nuclear polarization (CIDNP) signals in the aromatic region. The CIDNP spectrum of the holoprotein shows sharp resonances due to histidine residues. On removal of FMN from the protein, CIDNP signals originating from a tyrosine residue appeared, suggesting that the tyrosine residue is exposed to solvent after the depletion of FMN. However, this tyrosine residue appears to become inaccessible to the external dye after full incubation of FMN-depleted reductase with FMN. This suggests that the tyrosine residue could be located in the vicinity of the FMN-binding domain which constitutes the active center of the reductase.  相似文献   

3.
The accessible tyrosines of bovine insulin were studied by the photochemically induced dynamic nuclear polarization (photo-CIDNP) method. Tyrosine 1H nuclear polarization is observed in acidic, neutral, and basic solutions at all concentrations studied, in the absence of added salts as well as in the presence of 0.05-0.1 M chloride or phosphate. At pH 2.1 in the presence of chloride, at concentrations of 640 microM and above, most of the nuclear polarization at delta 6.82 originates from one group of tyrosines. On the basis of the crystallographic model, these are assumed to be the A14 tyrosines. We explored the possibility of a genuine concentration dependence of the photo-CIDNP intensity of insulin due to aggregation. In order to discern between such effects and trivial kinetic effects traceable to the optical irradiation method, the effects of concentration changes on polarization were examined in three apparently nonassociating trypsin inhibitor proteins. In insulin, the intensity of Tyr-A 14 polarization changes slowly at concentrations above 1 mM, suggesting that these residues are similarly accessible in all association states. At insulin concentrations below 320 microM, additional tyrosine emission signals were observed. These signals are probably due to B16 and B26 tyrosines of monomers. Polarization transfer effects from Tyr-A14 are evident in the tetramer and hexamer. Enhanced absorption effects in the two histidines (B5 and B10) of the insulin monomer were observed at pH 10 in the presence of 0.1 M phosphate.  相似文献   

4.
Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by (13)C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced (13)C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type. The donor in RCs of green sulfur bacteria clearly differs from the substantially asymmetric special pair of purple bacteria and appears to be similar to the more symmetric donor of photosystem I.  相似文献   

5.
Photochemically induced dynamic nuclear polarization has been observed in reaction centres of the green sulphur bacterium Chlorobium tepidum by 13C magic-angle spinning solid-state NMR under continuous illumination with white light. An almost complete set of chemical shifts of the aromatic ring carbons of a BChl a molecule has been obtained. All light-induced 13C NMR signals appear to be emissive, which is similar to the pattern observed in the reaction centers of plant photosystem I and purple bacterial reaction centres of Rhodobacter sphaeroides wild type. The donor in RCs of green sulfur bacteria clearly differs from the substantially asymmetric special pair of purple bacteria and appears to be similar to the more symmetric donor of photosystem I.  相似文献   

6.
Photo-chemically induced nuclear magnetic polarisation has been observed in both ring and methylene protons of tyrosyl units of leucine-enkephalin and of di- and tri-L-tyrosine during optical irradiation of deuterium oxide solutions in the presence of fluoresceine type dyes. The effect is due to reversible hydrogen atom abstraction from the hydroxyl of the tyrosyl group by excited triplet dye molecules.  相似文献   

7.
Although it has been indicated that proteins with chromophoric groups are not suitable for photo-chemically induced dynamic nuclear polarization (photo-CIDNP) measurements, we have successfully obtained these spectra for a heme protein, cytochrome b5. The characteristics of the spectra differed in some points from those so far reported. The intensities of the signals in the aromatic region were very weak, while those of the beta-methylene protons of one histidine and one tryptophan were extremely strong in comparison with the aromatic protons. It was demonstrated, on the basis of the photo-CIDNP spectrum, that one of seven histidines, all three tyrosines and a single tryptophan of the rabbit soluble cytochrome b5 are exposed on the surface of the protein. The results of comparison of the photo-CIDNP spectra for the rabbit soluble and intact, and bovine intact, cytochrome b5 led us to the conclusion that the conformation of the hydrophilic, catalytic part of cytochrome b5 is quite similar among these three proteins. In the presence of Chaps micelles, bovine intact cytochrome b5 was in monomeric form and the histidine signals disappeared from its photo-CIDNP spectrum. When bovine intact cytochrome b5 was reconstituted into egg yolk phosphatidylcholine liposomes, although separate signals due to the protein part were observed in the normal 1H-NMR spectrum, no photo-CIDNP signal could be detected. The normal spectrum suggests that the conformation of the protein embedded in liposomes is similar to that of the oligomeric form without lipids or a detergent.  相似文献   

8.
Recently, solid-state NMR spectroscopy became a viable method to investigate photosynthetic reaction centres (RCs) on the atomic level. To study the electronic structure of the radical cation state of the RC, occurring after the electron emission, solid-state NMR using an illumination set-up can be exploited. This paper describes the illumination set-up we designed for a standard Bruker wide-bore MAS NMR probe. In addition we demonstrate its application to get information from the active site in photosynthetic reaction centres of Rhodobacter sphaeroides R-26 by photochemically induced dynamic nuclear polarization (photo-CIDNP). Solid-state NMR spectra of natural abundance 13C in detergent solubilized quinone depleted photosynthetic reaction centres under continuous illumination showed exceptionally strong nuclear spin polarization in NMR lines. Both enhanced-absorptive and emissive polarization were seen in the carbon spectrum which could be assigned to a bacteriochlorophyll a (BChl a) cofactor, presumably the special pair BChl a. The sign and intensities of the 13C NMR signals provide information about the electron spin density distribution of the transiently formed radical P.+ on the atomic level.  相似文献   

9.
M M Snel  R Kaptein  B de Kruijff 《Biochemistry》1991,30(14):3387-3395
The topology of apocytochrome c, the heme-free precursor of the mitochondrial protein cytochrome c, was investigated in a lipid-associated form. For this purpose photochemically induced dynamic nuclear polarization 1H nuclear magnetic resonance (CIDNP 1H NMR) spectroscopy and quenching of tryptophan and tyrosine fluorescence by acrylamide were applied to an apocytochrome c-sodium dodecyl sulfate (SDS) micellar system. A pH titration of the chemical shifts of the histidine C2 proton resonances of apocytochrome c, using conventional 1H NMR, yielded pK(a)'s of 5.9 +/- 0.1 and 6.2 +/- 0.1, which were assigned to histidine-18 and -33 and histidine-26, respectively. In the presence of SDS micelles an average pK(a) of 8.1 +/- 0.1 was obtained for all histidine C2 protons. Photo-CIDNP enhancements of the histidine, tryptophan, and tyrosine residues, contained in the intact apocytochrome c and in chemically and enzymatically prepared fragments of the precursor, were reduced in the presence of SDS micelles. Similarly, the quenching of the tryptophan fluorescence of the polypeptides by acrylamide was diminished in the presence of SDS. These results indicate the aromatic residues studied are localized in the interface of the SDS micelle.  相似文献   

10.
11.
Photochemically induced dynamic nuclear polarization (photo-CIDNP) techniques have been used to examine denatured states of lysozyme produced under a variety of conditions. 1H CIDNP difference spectra of lysozyme denatured thermally, by the addition of 10 M urea, or by the complete reduction of its four disulfide bonds were found to differ substantially not only from the spectrum of the native protein but also from that expected for a completely unstructured polypeptide chain. Specifically, denatured lysozyme showed a much reduced enhancement of tryptophan relative to tyrosine than did a mixture of blocked amino acids with the same composition as the intact protein. By contrast, the CIDNP spectrum of lysozyme denatured in dimethyl sulfoxide solution was found to be similar to that expected for a random coil. It is proposed that nonrandom hydrophobic interactions are present within the denatured states of lysozyme in aqueous solution and that these reduce the reactivity of tryptophan residues relative to tyrosine residues. Characterization of such interactions is likely to be of considerable significance for an understanding of the process of protein folding.  相似文献   

12.
alpha-Lactalbumin (alpha-LA) is a calcium binding protein that also binds Mn(II), lanthanide ions, A1(III), Zn(II), Co(II). The structural implications of cation binding were studied by high-resolution proton (200 MHz) NMR and photochemically induced dynamic nuclear polarization (CIDNP) spectroscopy. Marked changes were observed in the NMR spectra of the apoprotein upon addition of a stoichiometric amount of calcium to yield Ca(II)-alpha-LA, manifested particularly in ring current shifted aliphatic peaks and in several shifts in the aromatic region, all of which were under slow exchange conditions. The CIDNP results showed that two surface-accessible tyrosine residues, assigned as Tyr-18 and -36, became inaccessible to the solvent upon addition of 1:1 Ca(II) to apo-alpha-lactalbumin, while Tyr-103 and Trp-104 remained completely accessible in both conformers. The proton NMR spectra of apo-alpha-LA and A1(III)-alpha-LA were extremely similar, which was also consistent with intrinsic fluorescence results [Murakami, K., & Berliner, L. J. (1983) Biochemistry 22, 3370-3374]. The paramagnetic cation Mn(II) bound to the strong calcium binding site on apo-alpha-LA but also to the weak secondary Ca(II) binding site(s) on Ca(II)-alpha-LA. It was also found that Co(II) bound to some secondary sites on Ca(II)-alpha-LA that overlapped the weak calcium site. All of the lanthanide shift reagents [Pr(III), Eu(III), Tb(III), Dy(III), Tm(III), Yb(III)] bound under slow exchange conditions; their relative affinities for apo-alpha-lactalbumin from competitive binding experiments were Dy(III), Tb(III), and Pr(III) greater than Ca(II) greater than Yb(III).  相似文献   

13.
UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc transferases), which initiate mucin-type O-glycan biosynthesis, have broad acceptor substrate specificities, and it is still unclear how they recognize peptides with different sequences. To increase our understanding of the catalytic mechanism of GalNAc-T1, one of the most ubiquitous isozymes, we studied the effect of substituting six conserved aromatic residues in the highly conserved Gal/GalNAc-glycosyltransferase motif with leucine on the catalytic properties of the enzyme. Our results indicate that substitutions of Trp302 and Phe325 have little impact on enzyme function and that substitutions of Phe303 and Tyr309 could be made with only limited impact on the interaction(s) with donor and/or acceptor substrates. By contrast, Trp328 and Trp316 are essential residues for enzyme functions, as substitution with leucine, at either site, led to complete inactivation of the enzymes. The roles of these tryptophan residues were further analyzed by evaluating the impact of substitutions with additional amino acids. All evaluated substitutions at Trp328 resulted in enzymes that were completely inactive, suggesting that the invariant Trp328 is essential for enzymatic activity. Trp316 mutant enzymes with nonaromatic replacements were again completely inactive, whereas two mutant enzymes containing a different aromatic amino acid, at position 316, showed low catalytic activity. Somewhat surprisingly, a kinetic analysis revealed that these two amino acid substitutions had a moderate impact on the enzyme's affinity for the donor substrate. By contrast, the drastically reduced affinity of the Trp316 mutant enzymes for the acceptor substrates suggests that Trp316 is important for this interaction.  相似文献   

14.
Carbohydrate recognition by lectins often involves the side chains of tyrosine, tryptophan, and histidine residues. These moieties are able to produce chemically induced dynamic nuclear polarization (CIDNP) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies accessibility of the respective groups to the light-absorbing dye. In principle, this technique is suitable to monitor surface properties of a receptor and the effect of ligand binding if CIDNP-reactive amino acids are affected. The application of this method in glycosciences can provide insights into the protein-carbohydrate interaction process, as illustrated in this initial study. It focuses on a series of N-acetylglucosamine-binding plant lectins of increasing structural complexity (hevein, pseudohevein, Urtica dioica agglutinin and wheat germ agglutinin and its domain B), for which structural NMR- or X-ray crystallographic data permit a decision of the validity of the CIDNP method-derived conclusions. On the other hand, the CIDNP data presented in this study can be used for a rating of our molecular models of hevein, pseudohevein, and domain B obtained by various modeling techniques. Experimentally, the shape and intensity of CIDNP signals are determined in the absence and in the presence of specific glycoligands. When the carbohydrate ligand is bound, CIDNP signals of side chain protons of tyrosine, tryptophan, or histidine residues are altered, for example, they are broadened and of reduced intensity or disappear completely. In the case of UDA, the appearance of a new tryptophan signal upon ligand binding was interpreted as an indication for a conformational change of the corresponding indole ring. Therefore, CIDNP represents a suitable tool to study protein-carbohydrate interactions in solution, complementing methods such as X-ray crystallography, high-resolution multidimensional nuclear magnetic resonance, transferred nuclear Overhauser effect experiments, and molecular modeling. Proteins 28:268–284, 1997 © 1997 Wiley-Liss Inc.  相似文献   

15.
Photochemically induced dynamic nuclear polarization (CIDNP)-1H-NMR spectroscopy has been used to study the interaction of the protein hormone epidermal growth factor (EGF) with micelles of sodium dodecyl sulfate (SDS) and dodecylphosphorylcholine (DPC). Conventional 1H-NMR spectra show that most protein resonances remain unperturbed when micelles are added to solution, which argues that the overall protein conformation is maintained in the presence of SDS or DPC at the concentrations used. Photo-CIDNP enhancements of resonances assigned to aromatic side chains of residues at the COOH terminus and beta-sheet regions of murine EGF (i.e. Trp-49, Trp-50, and Tyr-37) are considerably reduced in the presence of micelles, while resonances of aromatic side chains of residues found elsewhere on the protein surface are mostly unaffected. This suggests that the primary interaction between murine EGF and the micelle occurs at the micelle-bulk solvent interface. The overall negatively charged surface of SDS micelles tends to induce a stronger interaction with the protein compared to the zwitterionic DPC micelles, probably due to electrostatic interactions. Cleavage of the COOH-terminal pentapeptide containing both tryptophan residues enhances the already present, but weak, interaction with Tyr-10 and attenuates it with Tyr-37. A similar interaction pattern is found with rat EGF suggesting that at least concerning these two species of EGF the interaction is somewhat specific and conserved. A simple mass-action model for protein-micelle interaction is also presented.  相似文献   

16.
Tryptophan synthetase α subunit in which the histidine C2 (ring) positions are enriched in 13C and labeled with deuterium was prepared by incorporation of labeled histidine into protein of Escherichia coli. 13C nuclear magnetic resonance studies of the specifically labeled enzyme demonstrate that all four histidine residues of α subunit are highly immobilized within the protein matrix.  相似文献   

17.
The complete assignment of the aromatic proton nuclear magnetic resonances of the three tyrosine residues in hen lysozyme is reported. These assignments were made using double resonance techniques, specific chemical modifications of one residue (Tyr-23), and by interpretation of the effects of paramagnetic lanthanide ions. Some aspects of the behaviour of the tyrosine residues are reported, including pK values, reactivity towards modifying agents and conformational mobility.  相似文献   

18.
19.
The structures of variants of yeast iso-1-cytochrome c, in which the previously unchanged Tyr48 and Tyr48 + Trp59 have been replaced by Phe, have been characterised by NMR. The NMR data indicated that the structures of the variant cytochromes c are very similar to the wild-type protein. In particular, the heme environment and interactions of the heme macrocycle were shown to be preserved. The observation of chemical shift differences have allowed for the assessment of conformational changes. The substitution of Trp59 by Phe may have caused a small conformational change, a manifestation of which is the observed chemical shift differences at His39, Val57 and Tyr74. The structural basis for the reduction in redox potential accompanying the amino acid substitutions is discussed and the proposal made that the changes in potential are a direct consequence of the side chain properties and do not result primarily from conformational changes.  相似文献   

20.
We applied the protein photochemically induced dynamic nuclear polarization (photo-c.i.d.n.p.) method to explore the conformation of the side chains of tyrosine, tryptophan and histidine residues in three biotin-binding proteins. The c.i.d.n.p. spectra of avidin, streptavidin and 'core' streptavidin were compared with those of their complexes with biotin and its derivatives. The data indicate that the single tyrosine residue (Tyr-33) of avidin is clearly inaccessible to the triplet flavin photo-c.i.d.n.p. probe. The same holds for all tryptophan and histidine side chains. Although the analogous Tyr-43 residue of streptavidin is also buried, at least three of the other tyrosine residues of this protein are exposed. The same conclusions apply to the truncated form of the protein, core streptavidin. As judged by the photo-c.i.d.n.p. results, complexing of avidin and streptavidin with biotin, N-epsilon-biotinyl-L-lysine (biocytin) or biotinyltyrosine has little or no effect on tyrosine accessibility in these proteins. Biotinyltyrosine can be used to probe the depth of the corresponding binding site. The accessibility of the tyrosine side chain of biotinyltyrosine in the complex demonstrates the exquisite fit of the biotin-binding cleft of avidin: only the biotin moiety appears to be accommodated, leaving the tyrosine side chain exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号