首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
大豆种质资源耐盐性鉴定与研究   总被引:9,自引:0,他引:9  
通过对793份大豆种质资源进行芽期耐盐性鉴定,以及部分品种进行苗期和全生育期耐盐性鉴定,筛选出芽期、苗期及全生育期耐盐品种117份、41份和35份。其中有3个品种(WDD1812,晋豆23和晋遗38号)在芽期和苗期都表现高耐盐性;1个品种(晋豆23)在芽期、苗期、全生育期都表现高耐盐性。晋豆23还具有高度抗旱、高抗病毒病、耐红蜘蛛等特性,而晋遗38号来源于晋豆23。芽期或苗期耐盐性为一级的品种,如中黄13、新大豆1号、陕豆125、东农46、东大1号、合丰38等,不但具有高耐盐性,而且具有很好的丰产性,有些品种还具有优质和抗逆等优异的农艺性状。本研究筛选到的耐盐品种将为大豆耐盐育种提供优异的种质资源,同时对大豆全生育期耐盐性鉴定的指标和方法的探讨,将为大豆耐盐性鉴定科学方法的建立提供重要信息。  相似文献   

2.
Malonyl Isoflavone Glycosides in Soybean Seeds (Glycine max Merrill)   总被引:1,自引:0,他引:1  
The isoflavone constituents in soybean seeds were investigated, and 9 kinds of isoflavone glycosides were isolated from the hypocotyls of soybean seeds. Three kinds were proved to be malonylated soybean isoflavones named 6″-O-malonyldaidzin, 6″-O-malonylglycitin and 6″-O-malonylgenistin by UV, MS, IR and NMR. The malonylated isoflavone glycosides as major isoflavone constituents in soybean seed were thermally unstable, and were converted into their corresponding isoflavone glycosides. All of the isoflavone components produced intensely undesirable taste effects such as bitter, astringent and dry mouth feeling.  相似文献   

3.
Growth and symbiotic performance of soybean (Glycine max (L.)Merrill) cv. Bragg and three of its induced nodulation mutants(nod49, non-nodulating; ntsl 116, intermediate supernodulator;nts1007, extreme supernodulator) were compared throughout developmentunder different nitrogen regimes (0, 2, 5 and 10 mol nitratem–3). Nitrogen fixation was assessed using 15N-isotopedilution and xylem sap analysis for ureide content. Both techniquesconfirmed a complete lack of N2 fixation activity in nod49.Plant reliance on nitrogen fixation by the other genotypes wasdependent on the nitrate regime and the developmental stage.The ntsl007 and ntsl 116 mutants fixed more nitrogen than theparent cultivar in the presence of 10 mol m–3 nitratein the nutrient solution, but higher input of symbioticallyderived nitrogen was still insufficient to offset the amountof nitrogen removed in the harvested seed. However, the mutantsutilized less nitrate for growth than Bragg. Comparison of estimatesof N2 fixation derived from the 15N-dilution technique withthose based on relative ureide content of xylem sap indicatedthat the latter offered a simple and reliable procedure forevaluating the symbiotic performance of supernodulating plants. Key words: 15N-isotope dilution, supernodulation, ureides  相似文献   

4.
5.
Protoplasts were isolated enzymatically from immature cotyledons of soybean. The protoplasts divided to form calli in the K8P liquid medium. The calli further grew to 2–3 mm on the solid K8 medium and were transferred onto the MSB medium (MS minerals+B5 organic components+0.5–1.0 mg/l 2,4-D+0.2–0.5 mg/l BA) to obtain compact and nodular calli. Shoot formation was initiated on M1 medium (MSB medium with 0.15 mg/1 NAA, and BA, KT and ZT, 0.5 mg/l of each, 500 mg/1 CH). Differentiation frequency was 13.6–24.2%. Plants have been regenerated from protoplasts of immature cotyledons in 2 cultivars, and normal pods were obtained from them.  相似文献   

6.
A 2-year (1999-2000) study was conducted at Starkville and Stoneville, MS to determine if the occurrence of the mycoflora varied on Roundup Ready (transgenic) compared to conventional soybean (Glycine max) cultivars. A total of 7,658 fungal isolates were identified from the pod and seed tissues of four cultivars compared at growth stages R6 and R8. Ninety-nine percent of all fungi isolated were mitosporic fungi and ascomycetes. In both years, total fungal isolates from the two locations were greater from the pod (65%) than from seed (33%) tissues. Isolation frequency from conventional cultivars was 54% compared to 46% for the transgenic cultivars. The most common fungi identified that are reported pathogens of soybean included Alternaria, Cercospora, Cladosporium, Diaporthe, Fusarium and Verticillium spp. When main effects and interactions were compared among the frequency data for the fungal genera, significant differences occurred, but consistent trends were not noted. Isolation frequencies of Diaporthe spp. during the R6 growth stage, were significantly greater on the conventional than on the transgenic cultivars in both years of the study, but only at Starkville. Isolation frequencies from samples taken during the R8 growth stage were similar at both locations in 1999 and 2000. Fusarium spp. isolated at R6 and R8 growth stages from pod and seed tissues were significantly greater on conventional than on transgenic cultivars in 2000. Even though frequencies were often significantly different between the transgenic and conventional cultivars, the data was not consistent between locations, pod and seed tissues, or growth stages. The pod and seed mycoflora of transgenic and conventional soybean cultivars was, therefore, similar in Mississippi.  相似文献   

7.
Control of Seed Growth in Soya Beans [Glycine max (L.) Merrill]   总被引:2,自引:0,他引:2  
The seed is the primary sink for photosynthate during reproductivegrowth and an understanding of the mechanisms controlling therate of seed growth is necessary to understand completely theyield production process. The growth rate of individual seedsof seven soya bean [Glycine max (L.) Merrill] cultivars withgenetic differences in seed size varied from 10.8 to 3.9 mgseed–1 day–1. The growth rates were highly correlatedwith final seed size. The growth rate of cotyledons culturedin a complete nutrient medium was highly correlated with thegrowth rate of seeds developing on the plant and with finalseed size. The number of cells per seed in the cotyledons variedfrom 10.2 to 5.7 x 106 across the seven cultivars. The numberof cells per seed in the cotyledons was significantly correlatedwith final seed size and the seed growth rate both on the plantand in the culture medium. The data suggest that genetic differencesin seed growth rates are controlled by the cotyledons and thenumber of cells in the cotyledons may be the mechanism of control. Glycine max L., soya bean, seed size, growth rate, cell number, sink activity  相似文献   

8.
Summary Rhizobial inoculation trials were conducted in an acid heavy clay soil in Mekong Delta, Viet Nam, using peat based inoculants produced locally and the commercial granular product of Nitragin CCo., Wisconsin, USA. The pH of these soils ranged from 4.5 to 5.1. Two soybean cultivars, MTD6 and MTD10, were tested as host plants. There were no significant differences between locally made inoculant treated plants and the uninoculated controls in both cultivars. But, the Nitragin inoculation improved all plant characteristics examined in both cultivars. Grain yields of Nitragin inoculated plants of cultivar MTD6 and cultivar MTD10 were 6.5 and 5.5 times as much as those of the controls; protein content of grain increased 11 and 16 percent, respectively. Well nodulated plants had shorter life cycles, flowering durations, and days to flowering. The Rhizobium symbiosis resulted in an additional 153 kg grain-N/ha. These studies show that a surface coated commercial multistrain inoculant can be used to successfully grow soybeans in the acid, heavy clay soils of the Mekong Delta.  相似文献   

9.
Summary Silicon during the early vegetative stage did not affect the oven dry weight of any of the various tissues of the soybean plant. Silicon did, however, decrease the Mn concentration in the youngest fully mature leaf at intermediate levels of Mn. This effect did not occur at the lowest or highest Mn levels. Deficiency and toxicity symptoms were moderated to a slight degree by Si except at the highest level of Mn.  相似文献   

10.
In Glycine max, the second-stage juveniles of Meloidogyne incognita entered the roots through the apical meristem or elongation zone. The juveniles induced giant cells in the zone of vascular strands. Near the head of the nematode and adjacent to the giant cells, the vascular strands exhibited abnormalities in their shapes and structures; both xylem and phloem were found to be affected. The giant cells had dense and granular cytoplasm, and large nuclei with large nucleoli. Some parenchyma cells exhibited hypertrophy, while others exhibited hyperplasia. The distinctive feature of the study is reporting the occurrence of abnormal xylem, abnormal phloem and abnormal parenchyma.  相似文献   

11.
Somatic embryos and embryogenic tissues were initiated from immature zygotic embryos of soybean [Glycine max (L.) Merrill cv. Fayette]. Zygotic embryos were placed on a medium containing 40 mg/l of 2,4-dichlorophenoxyacetic acid and 6% sucrose. Somatic embryos were first seen 4 weeks after cultures were initiated. Following transfer, secondary somatic embryos proliferated directly from the apical or terminal portions of the older primary somatic embryos. Single somatic embryos or clusters of embryos were seen growing directly from the top of older somatic embryos. Light microscopy revealed that these embryos were of surface or subsurface origin. The apical soybean somatic embryo tissue may represent cotyledonary tissue (which has been shown to be most responsive) at a very young and manipulatable state.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid Salaries and research support were provided by state and federal funds appropriated to OARDC-OSU. Journal Article No. 131-87  相似文献   

12.
大豆遗传转化研究进展   总被引:4,自引:0,他引:4  
综述了大豆遗传转化体系及其优缺点,转基因大豆的研究成果、生产状况和生物安全性评价,分析了大豆遗传转化中存在的一些问题及其解决办法,展望了未来大豆遗传转化的发展前景。  相似文献   

13.
Ammonium sulphate was applied at the rate of 300 kg N ha–1 with or without the nitrification inhibitor 1-carbamoyl-3(5)-methylpyrazol (4 kg ha–1) to plots measuring 1.5 × 1.5 m. The fertilizer and the inhibitor were washed into the top 15-cm layer of the soil, which was highly calcareous (55% CaCO3), and the plots were kept bare. The process of nitrification was monitored by regular soil sampling. In the absence of the inhibitor, nitrification was completed in three weeks. In the presence of the inhibitor only 10% of applied N was nitrified by the end of the third week and 42% by the end of the eighth week. Average soil temperature at 5–, 10– and 20-cm depth over the first six weeks was 26.0, 24.8 and 24.2°C, respectively.  相似文献   

14.
Soybean is a major leguminous plant that has the ability to establish a symbiotic association with the N-fixing bacteria, Bradyrhizobium japonicum. Soils are usually subjected to stress including salinity, drought, acidity, and suboptimal root zone temperature, adversely affecting the symbiotic process between soybean and the bacteria. One of the important processes affecting the performance of soybean under stress is the inhibited exchange of symbiosis-related signaling molecules, specifically genistein, between the host legume and B. japonicum during the initiation of symbiosis. Interestingly, inoculation of B. japonicum with the signal molecule genistein can partially or completely alleviate the stress. Understanding the techniques and the precise molecular pathways, which may be influenced by the signaling molecules during the stress, can be useful to determine parameters that enhance the plant’s ability to cope with stress. For example, the use of proteomic techniques to identify proteins expressed under stress can help characterize those proteins and their involvement in stress. Biotechnological-genetic techniques, either breeding or transformation, are also among the effective methods of improving soybean’s ability to fix N2 under stress. This can be achieved by identifying the genes, which may be expressed under stress in tolerant bacterial and plant species, and inserting them into the non-tolerant species. This article highlights some important advances in soybean N2 fixation under different stress conditions, and reviews some of the techniques used to improve the ability of plants and bacteria to efficiently fix N2 under stress.  相似文献   

15.
Dehydration Injury in Germinating Soybean (Glycine max L. Merr.) Seeds   总被引:2,自引:3,他引:2  
The sensitivity of soybean (Glycine max L. Merr. cv Maple Arrow) seeds to dehydration changed during germination. Seeds were tolerant of dehydration to 10% moisture if dried at 6 hours of imbibition, but were susceptible to dehydration injury if dried at 36 hours of imbibition. Dehydration injury appeared as loss of germination, slower growth rates of isolated axes, hypocotyl and root curling, and altered membrane permeability. Increased electrolyte leakage due to dehydration treatment was observed only from isolated axes but not from cotyledons, suggesting that cotyledons are more tolerant of dehydration. The transition from a dehydration-tolerant to a dehydration-susceptible state coincided with radicle elongation. However, the prevention of cell elongation by osmotic treatment in polyethylene glycol (−6 bars) or imbibition in 20 micrograms per milliliter cycloheximide did not prevent the loss of dehydration tolerance suggesting that neither cell elongation nor cytoplasmic protein synthesis was responsible for the change in sensitivity of soybean seeds to dehydration. Furthermore, the rate of dehydration or rate of rehydration did not alter the response to the dehydration stress.  相似文献   

16.
The soybean is a major crop in the agricultural systems of the Brazilian Cerrados (Savannahs), whose soils are acidic, devoid of nutrients and need to be amended before they are cultivated. However, below the ploughed layer there is a scarcity of nutrients and toxic aluminium (Al). These limit root growth, subsequently causing nutritional imbalance and drought stress. Our aim in the investigation described here was to identify genetic differences in the aluminium tolerance of soybeans by a 9 × 9 diallel cross among contrasting varieties grown in high-Al areas and in hydroponics. Combining ability analysis indicated predominantly additive gene effects, and the additive-dominance model explained most of the genetic differences in this germ plasm for mineral element absorption and root growth under aluminium stress. The relationship between the two factors suggest that conjugation hydroponics and field evaluations in breeding programmes would further improve soybeans with respect to yield stability under tropical cultivation conditions.  相似文献   

17.
An approach to certification of soybean genotypes has been developed. The procedure employs three methods of DNA analysis based on polymerase chain reaction (PCR): PCR with arbitrary primers (AP PCR), simple sequence repeat polymorphism (SSRP) analysis, and inter-simple sequence repeat (ISSR) analysis. The approach to certification proposed may be used in both genetic and breeding research and seed production. A certificate form that reflects the unique characteristics of each cultivar studied is proposed. The results of molecular genetic analysis of allele distribution in genotypes of soybean from different ecological geographic zones permit estimation of the adaptive significance of individual alleles.  相似文献   

18.
Adenylates (ATP, ADP, and AMP) may play a central role in the regulation of the O2-limited C and N metabolism of soybean nodules. To be able to interpret measurements of adenylate levels in whole nodules and to appreciate the significance of observed changes in adenylates associated with changes in O2-limited metabolism, methods were developed for measuring in vivo levels of adenylate pools in the cortex, plant central zone, and bacteroid fractions of soybean (Glycine max L. Merr cv Maple Arrow x Bradyrhizobium japonicum strain USDA 16) nodules. Intact nodulated roots were either frozen in situ by flushing with prechilled Freon-113(-156[deg]C) or by rapidly (<1 s) uprooting plants and plunging them into liquid N2. The adenylate energy charge (AEC = [ATP + 0.5 x ADP]/[ATP + ADP + AMP]) of whole-nodule tissue (0.65 [plus or minus] 0.01, n = 4) was low compared to that of subtending roots (0.80 [plus or minus] 0.03, n = 4), a finding indicative of hypoxic metabolism in nodules. The cortex and central zone tissues were dissected apart in lyophilized nodules, and AEC values were 0.84 [plus or minus] 0.04 and 0.61 [plus or minus] 0.03, respectively. Although the total adenylate pool in the lyophilized nodules was only 41% of that measured in hydrated tissues, the AEC values were similar, and the lyophilized nodules were assumed to provide useful material for assessing adenylate distribution. The nodule cortex contained 4.4% of whole-nodule adenylates, with 95.6% being located in the central zone. Aqueous fractionation of bacteroids from the plant fraction of whole nodules and the use of marker enzymes or compounds to correct for recovery of bacteroids and cross-contamination of the bacteroid and plant fractions resulted in estimates that 36.2% of the total adenylate pool was in bacteroids, and 59.4% was in the plant fraction of the central zone. These are the first quantitative assessments of adenylate distribution in the plant and bacteroid fractions of legume nodules. These estimates were combined with theoretical calculations of rates of ATP consumption in the cortex (9.5 nmol g-1 fresh weight of nodule s-1), plant central zone (38 nmol g-1 fresh weight of nodule s-1), and bacteroids (62 nmol g-1 fresh weight of nodule s-1) of soybean nodules to estimate the time constants for turnover of the total adenylate pool and the ATP pool within each nodule fraction. The low values for time constant (1.6-5.8 s for total adenylate, 0.9-2.5 s for ATP only) in each fraction reflect the high metabolic activity of soybean nodules and provide a background for further studies of the role of adenylates in O2-limited nodule metabolism.  相似文献   

19.
Nitrogen fixation and assimilation in nodules and roots were studied in soybean (Glycine max L.) exposed to different levels of aluminium (Al) stress (0, 50, 200 and 500 μM). Al at 500 μM induced oxidative stress, which became evident from an increase in lipid peroxidation accompanied by a concomitant decline in antioxidant enzyme activities and leghaemoglobin breakdown. Consequently, there was also a reduction in nitrogenase activity. However, the leghaemoglobin levels and nitrogenase activity were unexpectedly found to be higher in nodules when the plants were treated with 200 μM Al. Of the enzymes involved in nitrogen assimilation, the activity of glutamate dehydrogenase-NADH was reduced in nodules under Al stress, but it was significantly higher in roots at 500 μM Al as compared to that in the control. In nodules, the glutamine synthetase/glutamate synthase-NADH pathway, assayed in terms of activity and expression of both the enzymes, was inhibited at >50 μM Al; but in roots this inhibitory effect was apparent only at 500 μM Al. No significant changes in ammonium and protein contents were recorded in the nodules or roots when the plants were treated with 50 μM Al. However, Al at ≥200 μM significantly increased the ammonium levels and decreased the protein content in the nodules. But these contrasting effects on ammonium and protein contents due to Al stress were observed in the roots only at 500 μM Al. The results suggest that the effect of Al stress on nitrogen assimilation is more conspicuous in nodules than that in the roots of soybean plants.  相似文献   

20.
Smith IK  Lang AL 《Plant physiology》1988,86(3):798-802
Sulfate translocation in soybean (Glycine max L. Merr) was investigated. More than 90% of the sulfate entering the shoot system was recoverable in one or two developing trifoliate leaves. In young plants, the first trifoliate leaf contained between 10 to 20 times as much sulfate as the primary leaves, even though both types of leaf had similar rates of transpiration and photosynthesis. We conclude that most of the sulfate entering mature leaves is rapidly loaded into the phloem and translocated to sinks elsewhere in the plant. This loading was inhibited by carbonylcyanide m-chlorophenylhydrazone and selenate. At sulfate concentrations below 0.1 millimolar, more than 95% of the sulfate entering primary leaves was exported. At higher concentrations the rate of export increased but so did the amount of sulfate remaining in the leaves. Removal of the first trifoliate leaf increased two-fold the transport of sulfate to the apex, indicating that these are competing sinks for sulfate translocated from the primary leaves. The small amount of sulfate transported into the mesophyll cells of primary leaves is a result of feedback regulation by the intracellular sulfate pool, not a consequence of their metabolic inactivity. For example, treatment of plants with 2 millimolar aminotriazole caused a 700 nanomoles per gram fresh weight increase in the glutathione content of primary leaves, but had no effect on sulfate aquisition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号