首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known for some time that isolated heart mitochondria can both take up and extrude Mg2+ by respiration-dependent, uncoupler-sensitive processes. A re-examination of these reactions reveals that the respiration-dependent uptake of Mg2+ can be quite rapid and efficient and is apparently preceded by a passive binding to the inner membrane. The rate of Mg2+ uptake can exceed 30 ng ion/min/mg protein at an efficiency of about 1 ng ion Mg2+ accumulated per ng atom O2 consumed. Passive binding and respiration-dependent accumulation of Mg2+ are strongly inhibited by K+ and other monovalent cations and the uptake reaction is further decreased by the presence of ATP or ADP. Under conditions approaching those faced by mitochondria in situ (state 3 respiration in a KCl medium) the rate of Mg2+ uptake, as estimated from 28Mg2+ distribution, is no more than 0.25 ng ion/min/mg. When heart mitochondria are suspended in a Mg2+-free medium, a slow, respiration-dependent Mg2+ efflux is seen. This reaction is quite insensitive to external K+ and otherwise shows an inhibitor profile markedly different from that of the Mg2+ accumulation reaction. Neither the uptake nor the loss of Mg2+ is inhibited by ruthenium red or diltiazem. These reactions therefore appear unrelated to those involved in the uptake and release of Ca2+. It is concluded that heart mitochondria have separate pathways available for Mg2+ uptake and release.  相似文献   

2.
In order to examine the effect of a single bout of exercise on hepatic mitochondrial function, starved untrained male rats swam at 34-35 degrees C with a tail weight (5% of body wt.) for 100 min. The rates of ADP-stimulated and uncoupled respiration were higher in the mitochondria isolated from the exercised rats regardless of the substrate utilized. Succinate-linked Ca2+ uptake was 48% greater in the exercised group; however, Ca2+ efflux was markedly depressed. The inhibition of Ca2+ uptake by Mg2+ was higher in the control group, so that the difference in Ca2+ uptake between the two groups was greater in the presence of Mg2+ than in its absence. The response of phosphorylating respiration and Ca2+ fluxes to exogenous phosphate and the pH of the assay medium differed in the exercise group. These observations with the exercised group were not related to non-specific stress. The exercise-induced mitochondrial-functional alterations are reminiscent of those obtained from mitochondria isolated from glucagon- or catecholamine-treated sedentary rats. Thus, adrenergic stimulation as well as other factors may be operating during exercise, leading to an alteration of mitochondrial function in vitro.  相似文献   

3.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

4.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

5.
Ca2+ transport in mitochondria was studied in situ using digitonin-permeabilized cells of the ciliate protozoan Tetrahymena pyriformis GL. In the presence of oxidizable substrates and inorganic phosphate, mitochondria were able to accumulate a large amount of the added Ca2+ without subsequent uncoupling and mitochondrial damage. However, the maximal Ca2+ uptake dramatically decreased in the presence of micromolar concentrations of the fluorescent calcium indicator, chlortetracycline, which in aerobic conditions caused an uncoupling of the respiration in Ca2+-loaded mitochondria. Moreover, on reaching hypoxia, when the rate of oxygen diffusion from the air to the stirred incubation medium became a limiting factor, continuous Ca2+ oscillations were observed. Ca2+ fluxes were synchronous with the cyclic changes of the membrane potential and were followed with a significant delay by the changes of the membrane-associated fluorescence of Ca-chlortetracycline complexes. Both the chlortetracycline-induced uncoupling of the respiration and the oscillations were prevented by either EGTA or ruthenium red. It is suggested that in conditions of the limited rate of respiration the oscillations are generated as a result of the functioning of the two Ca2+-transport pathways: a Ca2+ uniport and a chlortetracycline-mediated electroneutral Ca2+ efflux.  相似文献   

6.
Measurements of binding of certain divalent cations to yeast apoenolase were made using a pH-meter, chromatography, a divalent cation electrode, and ultrafiltration. The binding of the activating metal ions Mg2+ and Co2+ and the nonactivator Ca2+ were studied as functions of the presence or absence of substrate/product, phosphate, and fluoride or level of Tb3+. The data suggest phosphate and fluoride increase Mg2+ binding but not Ca2+ binding. Substrate/product appears to increase Ca2+ binding as well as that of Mg2+ and Co2+. In the presence of substrate, Co2+ binding was 5-6 mol/mol dimer. In the absence of substrate/product, Tb3+ reduced Co2+ binding from 4 mol/mol to 2. These data are interpreted in terms of binding to "conformational," "catalytic" (substrate/product dependent), and "inhibitory" sites. Measurements of Tb3+ fluorescence quenching by Co2+ suggested that the distance between "conformational" sites on the two subunits was large, while the distance between "conformational" and "inhibitory" sites was ca. 17 +/- 4 A. Potentiometric titrations of apoenzyme with Ca2+ and Mg2+ showed that the metal ions produced the same proton release in the presence or absence of substrate/product. If phosphate and fluoride were present, then more protons were released if Ca2+ was the titrant rather than Mg2+, suggesting a difference in ionization state in the complex with the activating metal. Electron paramagnetic resonance studies of Co2+ binding to the various sites in the enzyme are presented. The Co2+ bound to all three sites appears to be high spin, consistent with a preponderance of oxyligands in an octahedral environment. Substrate, citrate, and a strongly binding substrate analogue strongly enhance the hyperfine structure of conformational Co2+. This is interpreted as the result of a change in interaction of an axial ligand to conformational Co2+ produced by carbon-3 of substrate or analogue.  相似文献   

7.
D W Jung  L Apel  G P Brierley 《Biochemistry》1990,29(17):4121-4128
The concentration of free Mg2+ in the matrix of isolated heart mitochondria has been monitored by using the fluorescent probe furaptra (mag-fura-2). Beef heart mitochondria respiring in a KCl medium in the absence of external Mg2+ maintain free matrix Mg2+ near 0.50 mM. Addition of Pi under these conditions decreases free Mg2+ by 0.12-0.17 mM depending on the substrate. This decrease in free Mg2+ appears to reflect changing ligand availability in the matrix. The decrease is prevented when the Pi transporter is blocked by mersalyl. Addition of ADP to initiate state 3 respiration causes a marked increase in free matrix Mg2+ (0.1-0.2 mM) that persists as long as ATP formation is taking place; free Mg2+ then returns to the base level. This cyclic change is blocked by oligomycin and carboxyatractyloside and appears to reflect to a large extent the decrease in matrix Pi that accompanies oxidative phosphorylation. Exchange of external ADP for matrix ATP may also contribute to the increase in free matrix Mg2+. Addition of an uncoupler promotes anion efflux and increases free matrix Mg2+. Similar changes in free Mg2+ on addition of Pi, ADP, or uncoupler are seen when extramitochondrial Mg2+ is buffered from 0.5 to 2 mM, but the basal free matrix Mg2+ increases as external Mg2+ concentration increases in this range. Free matrix Mg2+ also increases when total mitochondrial Mg2+ is increased by respiration-dependent uptake in the presence of Pi. It is concluded that matrix free Mg2+ changes significantly with changing ligand availability and that such changes may contribute to the regulation of Mg2(+)-sensitive matrix enzymes and membrane transporters.  相似文献   

8.
The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.  相似文献   

9.
The effect of phosphatidylethanolamine N-methylation on Na+-Ca2+ exchange was studied in sarcolemmal vesicles isolated from rat heart. Phosphatidylethanolamine N-methylation following incubation of membranes with S-adenosyl-L-methionine, a methyl donor for the enzymatic N-methylation, inhibited Nai+-dependent Ca2+ uptake by about 50%. The N-methylation reaction did not alter the passive permeability of the sarcolemmal vesicles to Na+ and Ca2+ and did not modify the electrogenic characteristics of the exchanger. The depressant effect of phosphatidylethanolamine N-methylation on Nai+-dependent Ca2+ uptake was prevented by S-adenosyl-L-homocysteine, an inhibitor of the N-methylation. Pretreatment of sarcolemma with methyl acetimidate hydrochloride, an amino-group-blocking agent, also prevented methylation-induced inhibition of Ca2+ uptake. In the presence of exogenous phospholipid substrate, the phospholipid N-methylation process in methyl-acetimidate-treated sarcolemmal vesicles was restored and the inhibitory effect on Ca2+ uptake was evident. These results suggest that phosphatidylethanolamine N-methylation influences the heart sarcolemmal Na+-Ca2+ exchange system.  相似文献   

10.
Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria.   总被引:2,自引:2,他引:0       下载免费PDF全文
Addition of Ruthenium Red to energized rat liver mitochondria that have previously accumulated Ca2+ and phosphate from the external medium induces a parallel efflux of both these ions. Mersalyl or dithioerythritol, which decrease Ruthenium Red-insensitive Ca2+ efflux, also decrease phosphate efflux to the same extent. Conversely diazenedicarboxylic acid bis(NN-dimethylamide) (DDBA), which increases the Ruthenium Red-induced Ca2+ efflux concurrently increases phosphate release. Dithioerythritol and DDBA, reducing and oxidizing agents of thiol groups respectively, modify Ca2+ and Pi efflux without penetrating the mitochondrial inner membrane. Under all the adopted conditions the membrane potential is preserved. The release of resting respiration and the parallel efflux of Mg2+ and adenine nucleotides, events closely correlated to Ca2+ cycling, are equally prevented either by mersalyl, which inhibits phosphate transport, or dithioerythritol; DDBA has the opposite effect. These findings and the observation that suggest that Ca2+ and phosphate transport in energized liver mitochondria are closely related and dependent on the redox state of membrane-bound thiol groups.  相似文献   

11.
In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

12.
Calcium accumulation by two fractions of sarcoplasmic reticulum presumably derived from longitudinal tubules (light vesicles) and terminal cisternae (heavy vesicles) was examined radiochemically in the presence of various free Mg2+ concentrations. Both fractions of sarcoplasmic reticulum exhibited a Mg2+-dependent increase in phosphate-supported calcium uptake velocity, though half-maximal velocity in heavy vesicles occurred at a much higher free Mg2+ concentration than that in light vesicles (i.e., approx. 0.90 mM vs. approx. 0.02 mM Mg2+). Calcium uptake velocity in light vesicles correlated with Ca2+-dependent ATPase activity, suggesting that Mg2+ stimulated the calcium pump. Calcium uptake velocity in heavy vesicles did not correlate with Ca2+-dependent ATPase activity, although a Mg2+-dependent increase in calcium influx was observed. Thus, Mg2+ may increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles. Analyses of calcium sequestration (in the absence of phosphate) showed a similar trend in that elevation of Mg2+ from 0.07 to 5 mM stimulated calcium sequestration in heavy vesicles much more than in light vesicles. This difference between the two fractions of sarcoplasmic reticulum was not explained by phosphoenzyme (EP) level or distribution. Analyses of calcium uptake, Ca2+-dependent ATPase activity, and unidirectional calcium flux in the presence of approx. 0.4 mM Mg2+ suggested that ruthenium red (0.5 microM) can also increase the coupling of ATP hydrolysis to calcium transport in heavy vesicles, with no effect in light vesicles. These functional differences between light and heavy vesicles suggest that calcium transport in terminal cisternae is regulated differently from that in longitudinal tubules.  相似文献   

13.
1. Spermine has previously been reported to be an activator of mitochondrial Ca2+ uptake [Nicchitta & Williamson (1984) J. Biol. Chem. 259, 12978-12983]. This is confirmed in the present studies on rat heart, liver and kidney mitochondria by using the activities of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) as probes for matrix Ca2+, and also, for the heart mitochondria, by using entrapped fura-2. 2. As also found previously [Damuni, Humphreys & Reed (1984) Biochem. Biophys. Res. Commun. 124, 95-99], spermine activated extracted pyruvate dehydrogenase phosphate phosphatase. However, it was found to have no effects at all on the extracted NAD+-isocitrate or 2-oxoglutarate dehydrogenases. It also had no effects on activities of the enzymes in mitochondria incubated in the absence of Ca2+, or on the Ca2+-sensitivity of the enzymes in uncoupled mitochondria. 3. Spermine clearly activated 45Ca uptake by coupled mitochondria, but had no effect on Ca2+ egress from mitochondria previously loaded with 45Ca. 4. Spermine (with effective Km values of around 0.2-0.4 mM) caused an approx. 2-3-fold decrease in the effective ranges of extramitochondrial Ca2+ in the activation of the Ca2+-sensitive matrix enzymes in coupled mitochondria from all of the tissues. The effects of spermine appeared to be largely independent of the other effectors of mitochondrial Ca2+ transport, such as Mg2+ (inhibitor of uptake) and Na+ (promoter of egrees). 5. In the most physiological circumstance, coupled mitochondria incubated with Na+ and Mg2+, the presence of saturating spermine (2 mM) resulted in an effective extramitochondrial Ca2+ range for matrix enzyme activation of from about 30-50 nM up to about 800-1200 nM, with half-maximal effects around 250-400 nM-Ca2+. The implications of these findings for the regulation of matrix and extramitochondrial Ca2+ are discussed.  相似文献   

14.
1. The effect of the benzodiazepines Ro5-4864, AHN 086 and clonazepam on the release of Ca2+ from rat heart and kidney mitochondria was studied. 2. The peripheral-type benzodiazepines Ro5-4864 and AHN 086 induced Ca2+ release which was blocked by Mg2+ whereas the central-type benzodiazepine clonazepam was ineffective. 3. An associated collapse of membrane potential and swelling were also induced by AHN 086 in the presence of Ca2+. 4. However, no oxidation of pyridine nucleotides or increased rate or respiration were observed. 5. Release of Sr2+ was induced by AHN 086 in the absence of inorganic phosphate but not in its presence. 6. These data are discussed in the context of the current hypotheses on the mechanism of mitochondrial Ca2+ release.  相似文献   

15.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

16.
We examined the effects of the divalent cations Ca2+ and Mg2+ on inositol phosphate accumulation in bovine parathyroid cells prelabelled with [3H]inositol to determine whether the high extracellular Ca2+ and Mg2+-evoked transients in cytosolic Ca2+ in these cells might result from increases in cellular IP3 levels. In the presence of Li+, both Ca2+ and Mg2+ produced rapid, 2-6-fold increases in IP3 and IP2 and a linear increase in IP of 6-8-fold at 30 min. Smaller (1.5-2-fold) increases in IP2 and IP3 were evident within 7.5-15 s upon exposure to high (3 mM) Ca2+ in the absence of Li+. The relative potencies of Ca2+ and Mg2+ (Ca2+ 3-fold more potent than Mg2+) in elevating inositol phosphates were similar to those for their effects in inhibiting PTH release. Fluoride (5 and 10 mM) also produced similar increases in inositol phosphate accumulation, presumably through activation of phospholipase C by a guanine nucleotide (G) protein-dependent process. Thus, high extracellular Ca2+ and Mg2+-induced spikes in cytosolic Ca2+ in bovine parathyroid cells may be mediated by increases in IP3, perhaps through a receptor-mediated process linked to phospholipase C by a G-protein.  相似文献   

17.
Calcium uptake into ejaculated ram spermatozoa is highly enhanced by the addition of extracellular phosphate. Under identical conditions, extracellular calcium stimulates the uptake of phosphate by the cells. Both calcium and phosphate uptake are comparably inhibited by the sulfhydryl reagent mersalyl. The I50 was found to be 6.36 and 10.14 nmol mersalyl per mg protein for phosphate and calcium uptake, respectively. Calcium uptake is inhibited by mersalyl whether phosphate is present or not. Extracellular fructose causes a 5-fold increase in calcium uptake. When fructose and phosphate are present in the cell's medium, there is an additive effect, which indicates that two independent systems are involved in calcium transport into the cell. Ruthenium red, which blocks Ca2+ transport into the mitochondria, causes 70% and 95% inhibition of calcium uptake in the absence or in the presence of fructose, respectively. Ruthenium red does not affect phosphate uptake unless calcium was present in the incubation medium. The stimulatory effect of fructose upon calcium uptake can be mimicked by L-lactate and can be inhibited by the glycolytic inhibitor 2-deoxyglucose. Fructose and L-lactate stimulate mitochondrial respiration in a comparable way. Oligomycin, which inhibits mitochondrial ATP synthesis, does not inhibit Ca2+ uptake. This indicates that ATP is not involved in the mechanism by which mitochondrial respiration stimulates Ca2+ uptake. The calcium channel blocker, verapamil, inhibits Ca2+ uptake in the presence or absence of extracellular phosphate. The phosphate-dependent calcium transport mechanism is more sensitive to verapamil than is the phosphate-independent transporter. In summary, the data indicate that the plasma membrane of mammalian spermatozoa contains a calcium/phosphate symporter, a phosphate-independent calcium carrier and a calcium-independent phosphate carrier.  相似文献   

18.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

19.
Magnesium transport across sarcoplasmic reticulum (SR) vesicles was investigated in reaction mixtures of various composition using antipyrylazo III or arsenazo I to monitor extravesicular free Mg2+. The half-time of passive Mg2+ efflux from Mg2+-loaded SR was 100 s in 100 mM KCl, 150 S in 100 mM K gluconate, and 370 S in either 100 mM Tris methanesulfonate or 200 mM sucrose solutions. The concentration and time course of Mg2+ released into the medium was also measured during ATP-dependent Ca2+ uptake by SR. In reaction mixtures containing up to 3 mM Mg2+, small changes in free magnesium of 10 microM or less were accurately detected without interference from changes in free Ca2+ of up to 100 microM. Three experimental protocols were used to determine whether the increase of free [Mg2+] in the medium after an addition of ATP was due to Mg2+ dissociated from ATP following ATP hydrolysis or to Mg2+ translocation from inside to outside of the vesicles. 1) In the presence of ATP-regenerating systems which maintained constant ATP to ADP ratios and normal rates of active Ca2+ uptake, the increase of Mg2+ in the medium was negligible. 2) Mg2+ released during ATP-dependent Ca2+ uptake by SR was similar to that observed during ATP hydrolysis catalyzed by apyrase, in the absence of SR. 3) In SR lysed with Triton X-100 such that Ca2+ transport was uncoupled from ATPase activity, the rate and amount of Mg2+ release was greater than that observed during ATP-dependent Ca2+ uptake by intact vesicles. Taken together, the results indicate that passive fluxes of Mg2+ across SR membranes are 10 times faster than those of Ca2+ and that Mg2+ is not counter-transported during active Ca2+ accumulation by SR even in reaction mixtures containing minimal concentrations of membrane permeable ions that could be rapidly exchanged or cotransported with Ca2+ (e.g. K+ or Cl-).  相似文献   

20.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号