首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung function is a strong predictor of mortality. While inflammatory markers have been associated with lung function decrease, pathways are still poorly understood and epigenetic changes may participate in lung function decline mechanisms. We studied the cross-sectional association between DNA methylation in nine inflammatory genes and lung function in a cohort of 756 elderly men living in the metropolitan area of Boston. Participants donated a blood sample for DNA methylation analysis and underwent spirometry at each visit every 3 to 5 y from 1999–2006. We used separate multivariate mixed effects regression models to study the association between each lung function measurement and DNA methylation within each gene. Decreased CRAT, F3 and TLR2 methylation was significantly associated with lower lung function. One interquartile range (IQR) decrease in DNA methylation was associated with lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), respectively by 2.94% (p < 10−4) and 2.47% (p < 10−3) for F3 and by 2.10% (p < 10−2) and 2.42% (p < 10−3) for TLR2. Decreased IFNγ and IL6 methylation was significantly associated with better lung function. One IQR decrease in DNA methylation was associated with higher FEV1 by 1.75% (p = 0.02) and 1.67% (p = 0.05) for IFNγ and IL6, respectively. These data demonstrate that DNA methylation may be part of the biological processes underlying the lung function decline and that IFNγ and IL6 may have ambivalent roles through activation of negative feedback.Key words: DNA methylation, genes, spirometry, FEV1, lungs, TLR2, F3, INOS, GCR, OGG1  相似文献   

2.
《Epigenetics》2013,8(3):261-269
Lung function is a strong predictor of mortality. While inflammatory markers have been associated with lung function decrease, pathways are still poorly understood and epigenetic changes may participate in lung function decline mechanisms. We studied the cross-sectional association between DNA methylation in nine inflammatory genes and lung function in a cohort of 756 elderly men living in the metropolitan area of Boston. Participants donated a blood sample for DNA methylation analysis and underwent spirometry at each visit every 3 to 5 y from 1999–2006. We used separate multivariate mixed effects regression models to study the association between each lung function measurement and DNA methylation within each gene. Decreased CRAT, F3 and TLR2 methylation was significantly associated with lower lung function. One interquartile range (IQR) decrease in DNA methylation was associated with lower forced vital capacity (FVC) and forced expiratory volume in one second (FEV1), respectively by 2.94% (p < 10?4) and 2.47% (p < 10?3) for F3, and by 2.10% (p < 10?2) and 2.42% (p < 10?3) for TLR2. Decreased IFNγ and IL6 methylation was significantly associated with better lung function. One IQR decrease in DNA methylation was associated with higher FEV1 by 1.75% (p = 0.02) and 1.67% (p = 0.05) for IFNγ and IL6, respectively. These data demonstrate that DNA methylation may be part of the biological processes underlying the lung function decline and that IFNγ and IL6 may have ambivalent roles through activation of negative feedback.  相似文献   

3.

Background

There is a need for new, noninvasive risk assessment tools for use in lung cancer population screening and prevention programs.

Methods

To investigate the technical feasibility of determining DNA methylation in exhaled breath condensate, we applied our previously-developed method for tag-adapted bisulfite genomic DNA sequencing (tBGS) for mapping of DNA methylation, and adapted it to exhaled breath condensate (EBC) from lung cancer cases and non-cancer controls. Promoter methylation patterns were analyzed in DAPK, RASSF1A and PAX5β promoters in EBC samples from 54 individuals, comprised of 37 controls [current- (n = 19), former- (n = 10), and never-smokers (n = 8)] and 17 lung cancer cases [current- (n = 5), former- (n = 11), and never-smokers (n = 1)].

Results

We found: (1) Wide inter-individual variability in methylation density and spatial distribution for DAPK, PAX5β and RASSF1A. (2) Methylation patterns from paired exhaled breath condensate and mouth rinse specimens were completely divergent. (3) For smoking status, the methylation density of RASSF1A was statistically different (p = 0.0285); pair-wise comparisons showed that the former smokers had higher methylation density versus never smokers and current smokers (p = 0.019 and p = 0.031). For DAPK and PAX5β, there was no such significant smoking-related difference. Underlying lung disease did not impact on methylation density for this geneset. (4) In case-control comparisons, CpG at -63 of DAPK promoter and +52 of PAX5β promoter were significantly associated with lung cancer status (p = 0.0042 and 0.0093, respectively). After adjusting for multiple testing, both loci were of borderline significance (padj = 0.054 and 0.031). (5) The DAPK gene had a regional methylation pattern with two blocks (1)~-215~-113 and (2) -84 ~+26); while similar in block 1, there was a significant case-control difference in methylation density in block 2 (p = 0.045); (6)Tumor stage and histology did not impact on the methylation density among the cases. (7) The results of qMSP applied to EBC correlated with the corresponding tBGS sequencing map loci.

Conclusion

Our results show that DNA methylation in exhaled breath condensate is detectable and is likely of lung origin. Suggestive correlations with smoking and lung cancer case-control status depend on individual gene and CpG site examined.  相似文献   

4.
Birthweight has been associated with a number of health outcomes throughout life. Crucial to proper infant growth and development is the placenta, and alterations to placental gene function may reflect differences in the intrauterine environment which functionally contribute to infant growth and may ultimately affect the child''s health. To examine if epigenetic alteration to the glucocorticoid receptor (GR) gene was linked to infant growth, we analyzed 480 human placentas for differential methylation of the GR gene exon 1F and examined how this variation in methylation extent was associated with fetal growth. Multivariable linear regression revealed a significant association (p < 0.0001) between differential methylation of the GR gene and large for gestational age (LGA) status. Our work is one of the first to link infant growth as a measure of the intrauterine environment and epigenetic alterations to the GR and suggests that DNA methylation may be a critical determinant of placental function.Key words: DNA methylation, placenta, fetal development, birthweight, epigenetics  相似文献   

5.
《Epigenetics》2013,8(5):566-572
Birthweight has been associated with a number of health outcomes throughout life. Crucial to proper infant growth and development is the placenta, and alterations to placental gene function may reflect differences in the intrauterine environment which functionally contribute to infant growth and may ultimately affect the child’s health. To examine if epigenetic alteration to the glucocorticoid receptor (GR) gene was linked to infant growth, we analyzed 480 human placentas for differential methylation of the GR gene exon 1F and examined how this variation in methylation extent was associated with fetal growth. Multivariable linear regression revealed a significant association (p &lt; 0.0001) between differential methylation of the GR gene and large for gestational age (LGA) status. Our work is one of the first to link infant growth as a measure of the intrauterine environment and epigenetic alterations to the GR and suggests that DNA methylation may be a critical determinant of placental function.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The effect of smoking cessation on the rate of decline in lung function in patients with advanced stages of chronic obstructive pulmonary disease (COPD) has not been clarified. Saccharomyces cerevisiae cell division cycle 6 homolog (CDC6) protein possesses the pro-apoptotic properties. We tested our hypothesis that the individual susceptibility to rapid decline in lung function despite smoking cessation in patients with advanced stages of COPD is attributed to the genetic variants in the CDC6 gene. We prospectively followed 82 patients (ex-smokers) during 30 months and evaluated the differences among the genotypes in the annual rate of decline in FEV1.0 (%predicted) with ten single nucleotide polymorphisms (SNPs) in and around the CDC6 gene. We found significant differences in SNP5 (National Center for Biotechnology Information SNP reference: rs2077464), SNP6 (rs13706), SNP7 (rs7217852), and SNP8 (rs9904270) with a gene-dosage effect (ANOVA overall-P = 0.029-0.030). The individual allele of SNP5G, SNP6A, SNP7G, and SNP8T were associated with rapid decline in FEV1.0 (%predicted) [odds ratio (95% confidence interval) = 2.35 (1.19-4.65), P = 0.014]. The SNP5G/SNP6A/SNP7G/SNP8T haplotype was associated with an increased risk of deterioration of FEV1.0 (%predicted) (P = 0.017). Importantly, SNP6 caused a change in amino acids in CDC6 protein (Val441Ile), immediately upstream of the caspase-3-dependent cleavage site of CDC6 (Asp442) during apoptosis. These results suggest that CDC6 may be one of the susceptibility genes that contribute to rapid decline in lung function despite smoking cessation in these patients with COPD.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号