首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway, which is mediated by IFN regulatory factors (IRFs). In order to complete their life cycle, viruses must modulate host IFN-mediated immune responses. Despite its association with significant human health problems, activities of Epstein-Barr virus (EBV), a human tumor-inducing herpesvirus, to evade host IFN-mediated innate immunity have not been well characterized. To search for EBV genes that block IFN signal transduction, we carried out a screening of EBV open reading frames for their abilities to block IFN-α/β-mediated luciferase expression upon Sendai virus infection. This screening demonstrates that EBV LF2 tegument protein specifically interacts with the central inhibitory association domain of IRF7, and this interaction leads to inhibition of the dimerization of IRF7, which suppresses IFN-α production and IFN-mediated immunity. This demonstrates a novel immune evasion mechanism of EBV LF2 in blocking cellular IRF7-mediated innate immunity.  相似文献   

5.
Natural killer (NK) cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ) contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18), independently of Toll-like receptor (TLR)-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.  相似文献   

6.
7.
8.
Development of reporter systems for in vivo examination of IFN-β induction or signaling of type I interferon (IFN-I) pathways is of great interest in order to characterize biological responses to different inducers such as viral infections. Several reporter mice have been developed to monitor the induction of both pathways in response to different agonists. However, alternative strategies that do not require transgenic mice breeding have to date not been reported. In addition, detection of these pathways in vivo in animal species other than mice has not yet been addressed. Herein we describe a simple method based on the use of an adeno-associated viral vector (AAV8-3xIRF-ISRE-Luc) containing an IFN-β induction and signaling-sensitive promoter sequence controlling the expression of the reporter gene luciferase. This vector is valid for monitoring IFN-I responses in vivo elicited by diverse stimuli in different organs. Intravenous administration of the vector in C57BL/6 mice and Syrian hamsters was able to detect activation of the IFN pathway in the liver upon systemic treatment with different pro-inflammatory agents and infection with Newcastle disease virus (NDV). In addition, intranasal instillation of AAV8-3xIRF-ISRE-Luc showed a rapid and transient IFN-I response in the respiratory tract of mice infected with the influenza A/PR8/34 virus lacking the NS1 protein. In comparison, this response was delayed and exacerbated in mice infected with influenza A/PR/8 wild type virus. In conclusion, the AAV8-3xIRF-ISRE-Luc vector offers the possibility of detecting IFN-I activation in response to different stimuli and in different animal models with no need for reporter transgenic animals.  相似文献   

9.
10.
11.
Type III interferons (IFNs) represent the most recently discovered group of IFNs. Together with type I IFNs (e.g. IFN-α/β), type III IFNs (IFN-λ) are produced as part of the innate immune response to virus infection, and elicit an anti-viral state by inducing expression of interferon stimulated genes (ISGs). It was initially thought that type I IFNs and type III IFNs perform largely redundant functions. However, it has become evident that type III IFNs particularly play a major role in antiviral protection of mucosal epithelial barriers, thereby serving an important role in the first-line defense against virus infection and invasion at contact areas with the outside world, versus the generally more broad, potent and systemic antiviral effects of type I IFNs. Herpesviruseses are large DNA viruses, which enter their host via mucosal surfaces and establish lifelong, latent infections. Despite the importance of mucosal epithelial cells in the pathogenesis of herpesviruses, our current knowledge on the interaction of herpesviruses with type III IFN is limited and largely restricted to studies on the alphaherpesvirus herpes simplex virus (HSV). This review summarizes the current understanding about the role of IFN-λ in the immune response against herpesvirus infections.  相似文献   

12.
Infant mortality from viral infection remains a major global health concern: viruses causing acute infections in immunologically mature hosts often follow a more severe course in early life, with prolonged or persistent viral replication. Similarly, the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) causes acute self-limiting infection in adult mice but follows a protracted course in infant animals, in which LCMV-specific CD8+ T cells fail to expand and control infection. By disrupting type I IFNs signaling in adult mice or providing IFN-α supplementation to infant mice, we show here that the impaired early life T cell responses and viral control result from limited early type I IFN responses. We postulated that plasmacytoid dendritic cells (pDC), which have been identified as one major source of immediate-early IFN-I, may not exert adult-like function in vivo in the early life microenvironment. We tested this hypothesis by studying pDC functions in vivo during LCMV infection and identified a coordinated downregulation of infant pDC maturation, activation and function: despite an adult-like in vitro activation capacity of infant pDCs, the expression of the E2-2 pDC master regulator (and of critical downstream antiviral genes such as MyD88, TLR7/TLR9, NF-κB, IRF7 and IRF8) is downregulated in vivo at baseline and during LCMV infection. A similar pattern was observed in response to ssRNA polyU, a model ligand of the TLR7 viral sensor. This suggests that the limited T cell-mediated defense against early life viral infections is largely attributable to / regulated by infant pDC responses and provides incentives for novel strategies to supplement or stimulate immediate-early IFN-α responses.  相似文献   

13.
The innate host defense against influenza virus is largely dependent on the type I interferon (IFN) system. However, surprisingly little is known about the cellular source of IFN in the infected lung. To clarify this question, we employed a reporter mouse that contains the firefly luciferase gene in place of the IFN-β-coding region. IFN-β-producing cells were identified either by simultaneous immunostaining of lungs for luciferase and cellular markers or by generating conditional reporter mice that express luciferase exclusively in defined cell types. Two different strains of influenza A virus were employed that either do or do not code for nonstructural protein 1 (NS1), which strongly suppresses innate immune responses of infected cells. We found that epithelial cells and lung macrophages, which represent the prime host cells for influenza viruses, showed vigorous IFN-β responses which, however, were severely reduced and delayed if the infecting virus was able to produce NS1. Interestingly, CD11c+ cell populations that were either expressing or lacking macrophage markers produced the bulk of IFN-β at 48 h after infection with wild-type influenza A virus. Our results demonstrate that the virus-encoded IFN-antagonistic factor NS1 disarms specifically epithelial cells and lung macrophages, which otherwise would serve as main mediators of the early response against infection by influenza virus.  相似文献   

14.
Virus-infected cells secrete a broad range of interferons (IFN) which confer resistance to yet uninfected cells by triggering the synthesis of antiviral factors. The relative contributions of the various IFN subtypes to innate immunity against virus infections remain elusive. IFN-α, IFN-β, and other type I IFN molecules signal through a common, universally expressed cell surface receptor, whereas type III IFN (IFN-λ) uses a distinct cell-type-specific receptor complex for signaling. Using mice lacking functional receptors for type I IFN, type III IFN, or both, we found that IFN-λ plays an important role in the defense against several human pathogens that infect the respiratory tract, such as influenza A virus, influenza B virus, respiratory syncytial virus, human metapneumovirus, and severe acute respiratory syndrome (SARS) coronavirus. These viruses were more pathogenic and replicated to higher titers in the lungs of mice lacking both IFN receptors than in mice with single IFN receptor defects. In contrast, Lassa fever virus, which infects via the respiratory tract but primarily replicates in the liver, was not influenced by the IFN-λ receptor defect. Careful analysis revealed that expression of functional IFN-λ receptor complexes in the lung and intestinal tract is restricted to epithelial cells and a few other, undefined cell types. Interestingly, we found that SARS coronavirus was present in feces from infected mice lacking receptors for both type I and type III IFN but not in those from mice lacking single receptors, supporting the view that IFN-λ contributes to the control of viral infections in epithelial cells of both respiratory and gastrointestinal tracts.The interferon (IFN) system represents a major element of the innate immune response against viral infections (10, 13, 14). Virus-induced IFN is a complex mixture of biologically active molecules, which includes type I and type III IFN. Type I IFN consists of 14 different IFN-α subtypes in the mouse as well as IFN-β, IFN-κ, IFN-ɛ, and limitin, which all signal through the same universally expressed cell surface receptor complex (IFNAR) (30). Type III IFN includes IFN-λ1, IFN-λ2, and IFN-λ3 (21, 28), of which only the latter two are encoded by genes that are expressed in the mouse (22). Type III IFN uses a distinct receptor complex (IL28R) for signaling (21, 28), which appears to be expressed on only a few cell types, including epithelial cells (29). Binding of type I IFN and type III IFN to their cognate receptor complexes triggers signaling cascades that result in the activation of a large number of genes, many of which encode antiviral proteins (10, 32). Type I IFN and type III IFN trigger highly similar gene expression profiles in responsive cells, suggesting that both IFN types might serve similar functions. However, it has to date been largely unclear to which extent IFN-λ might contribute to innate immunity.Using knockout mouse strains that lack receptors for type I IFN (IFNAR10/0), type III IFN (IL28Rα0/0), or both (IFNAR10/0IL28Rα0/0), we have recently shown that IFN-λ contributes to resistance against influenza A virus (FLUAV) (26). Here, we used the same mouse strains to investigate the relative contribution of IFN-λ in resistance against additional viral pathogens that infect the respiratory and gastrointestinal tract and to visualize IFN-λ-responsive cells. We found that the double-knockout mice showed enhanced susceptibility to various viruses that primarily replicate in lung epithelial cells. Our analysis further revealed that epithelial cells of both lung and gastrointestinal tracts can strongly respond to IFN-λ and that IFN-λ inhibited the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in both lung and gastrointestinal tracts.  相似文献   

15.
Beta interferon (IFN-β) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN-β production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN-β promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN-β-producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN-β in LACV-infected mouse brains. They further indicate that IFN-β synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types.  相似文献   

16.
Hematopoietic stem cells (HSCs) give rise to progenitors with potential to produce multiple cell types, including dendritic cells (DCs). DCs are the principal antigen-presenting cells and represent the crucial link between innate and adaptive immune responses. Bluetongue virus (BTV), an economically important Orbivirus of the Reoviridae family, causes a hemorrhagic disease mainly in sheep and occasionally in other species of ruminants. BTV is transmitted between its mammalian hosts by certain species of biting midges (Culicoides spp.) and is a potent alpha interferon (IFN-α) inducer. In the present report, we show that BTV infects cells of hematopoietic origin but not HSCs in immunocompetent sheep. However, BTV infects HSCs in the absence of type I IFN (IFN-I) signaling in vitro and in vivo. Infection of HSCs in vitro results in cellular death by apoptosis. Furthermore, BTV infects bone marrow-derived DCs (BM-DCs), interfering with their development to mature DCs in the absence of type I IFN signaling. Costimulatory molecules CD80 and CD86 and costimulatory molecules CD40 and major histocompatibility complex class II (MHC-II) are affected by BTV infection, suggesting that BTV interferes with DC antigen-presenting capacity. In vivo, different DC populations are also affected during the course of infection, probably as a result of a direct effect of BTV replication in DCs and the production of infectious virus. These new findings suggest that BTV infection of HSCs and DCs can impair the immune response, leading to persistence or animal death, and that this relies on IFN-I.  相似文献   

17.
Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号