首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
The mammalian E3 ubiquitin ligases RNF8 and RNF168 facilitate recruitment of the DNA damage response protein 53BP1 to sites of DNA double-strand breaks (DSBs). The mechanism involves recruitment of RNF8, followed by recruitment of RNF168, which ubiquitinates histones H2A/H2AX on K15. 53BP1 then binds to nucleosomes at sites of DNA DSBs by recognizing, in addition to methyl marks, histone H2A/H2AX ubiquitinated on K15. We report here that expressing H2AX fusion proteins with N-terminal bulky moieties can rescue 53BP1 recruitment to sites of DNA DSBs in cells lacking RNF8 or RNF168 or in cells treated with proteasome inhibitors, in which histone ubiquitination at sites of DNA DSBs is compromised. The rescue required S139 at the C-terminus of the H2AX fusion protein and was occasionally accompanied by partial rescue of ubiquitination at sites of DNA DSBs. We conclude that recruitment of 53BP1 to sites of DNA DSBs is possible in the absence of RNF8 or RNF168, but still dependent on chromatin ubiquitination.  相似文献   

3.
Histone ubiquitinations are critical for the activation of the DNA damage response (DDR). In particular, RNF168 and RING1B/BMI1 function in the DDR by ubiquitinating H2A/H2AX on Lys-13/15 and Lys-118/119, respectively. However, it remains to be defined how the ubiquitin pathway engages chromatin to provide regulation of ubiquitin targeting of specific histone residues. Here we identify the nucleosome acid patch as a critical chromatin mediator of H2A/H2AX ubiquitination (ub). The acidic patch is required for RNF168- and RING1B/BMI1-dependent H2A/H2AXub in vivo. The acidic patch functions within the nucleosome as nucleosomes containing a mutated acidic patch exhibit defective H2A/H2AXub by RNF168 and RING1B/BMI1 in vitro. Furthermore, direct perturbation of the nucleosome acidic patch in vivo by the expression of an engineered acidic patch interacting viral peptide, LANA, results in defective H2AXub and RNF168-dependent DNA damage responses including 53BP1 and BRCA1 recruitment to DNA damage. The acidic patch therefore is a critical nucleosome feature that may serve as a scaffold to integrate multiple ubiquitin signals on chromatin to compose selective ubiquitinations on histones for DNA damage signaling.  相似文献   

4.
Histone ubiquitination plays a vital role in DNA damage response (DDR), which is important for maintaining genomic integrity in eukaryotic cells. In DDR, ubiquitination of histone H2A and γH2AX by the concerted action of ubiquitin (Ub) ligases, RNF168 and RNF8, generates a cascade of ubiquitination signaling. However, little is known about deubiquitinating enzymes (DUBs) that may catalyze the removal of Ub from these histones. This study demonstrated that USP3, an apparent DUB for mono-ubiquitinated H2A, is indeed the enzyme for deubiquitinating Ub conjugates of γH2AX and H2A from lysine sites, where the ubiquitination is initiated by RNF168. Here, we showed that ectopic expression of USP3 led to the deubiquitination of both H2A and γH2AX in response to UV-induced DNA damage. Moreover, ectopic USP3 expression abrogated FK2 antibody-reactive Ub-conjugate foci, which co-localize with damage-induced γH2AX foci. In addition, USP3 overexpression impaired the accumulation of downstream repair factors BRCA1 and 53BP1 at the damage sites in response to both UV and γ-irradiation. We further identified that the USP3 removes Ub at lysine 13 and 15 of H2A and γH2AX, as well as lysine 118 and 119 of H2AX in response to DNA damage. Taken together, the results suggested that USP3 is a negative regulator of ubiquitination signaling, counteracting RNF168- and RNF8-mediated ubiquitination.  相似文献   

5.
In response to DNA damage, cells initiate complex signalling cascades leading to growth arrest and DNA repair. The recruitment of 53BP1 to damaged sites requires the activation of the ubiquitination cascade controlled by the E3 ubiquitin ligases RNF8 and RNF168, and methylation of histone H4 on lysine 20. However, molecular events that regulate the accessibility of methylated histones, to allow the recruitment of 53BP1 to DNA breaks, are unclear. Here, we show that like 53BP1, the JMJD2A (also known as KDM4A) tandem tudor domain binds dimethylated histone H4K20; however, JMJD2A is degraded by the proteasome following the DNA damage in an RNF8-dependent manner. We demonstrate that JMJD2A is ubiquitinated by RNF8 and RNF168. Moreover, ectopic expression of JMJD2A abrogates 53BP1 recruitment to DNA damage sites, indicating a role in antagonizing 53BP1 for methylated histone marks. The combined knockdown of JMJD2A and JMJD2B significantly rescued the ability of RNF8- and RNF168-deficient cells to form 53BP1 foci. We propose that the RNF8-dependent degradation of JMJD2A regulates DNA repair by controlling the recruitment of 53BP1 at DNA damage sites.  相似文献   

6.
Ubiquitination regulates important cellular processes, including the DNA damage response (DDR) and DNA repair. The complexity of the ubiquitin-mediated signals is decoded by ubiquitin receptors, which contain protein modules named ubiquitin binding domains (UBDs). We previously identified a new ubiquitin ligase, RNF168, involved in DDR and endowed with two UBDs named MIU (motif interacting with ubiquitin). Here we have provided the identification of a novel UBD, the UMI (UIM- and MIU-related UBD), present in RNF168, and characterized the interaction surface with ubiquitin, centered on two Leu residues. We have demonstrated that integrity of the UMI, in addition to the MIUs, is necessary for the proper localization of RNF168 and for ubiquitination of nuclear proteins, including histone H2A. Finally, we have shown that simultaneous inactivation of UMI and MIUs prevents the recruitment to DDR foci of the crucial downstream mediator 53BP1.  相似文献   

7.
Ubiquitinated derivatives of histones H2A and H2B, in which the carboxyl terminus of ubiquitin is joined to epsilon-amino groups of specific lysine residues of each histone, occur in vivo. Certain ubiquitin carrier proteins (E2s) catalyze ubiquitin transfer to histones (Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). The catalytic activities of these purified ubiquitin carrier proteins have been quantitatively characterized with purified histones, in order to determine if one or more of them exhibits specificity for H2A over other histones (H3,H4) which are not known to be ubiquitinated in vivo. The results show the following. 1) No E2 exhibits strong specificity for H2A over the other histones. 2) For a given histone, kinetics of formation of its monoubiquitinated adduct do not differ strongly among the E2s; sigmoid kinetics (nH = 2) are generally observed, with values of K 0.5 ranging from 2-6 microM. 3) E214K catalyzes primarily monoubiquitination. 4) E220K catalyzes multiple ubiquitination (up to three ubiquitin/histone) by a processive mechanism that involves joining of ubiquitin carboxyl termini to multiple histone lysine residues. 5) E235K also catalyzes processive ubiquitination, with formation of polyubiquitinated products exhibiting a lag phase. Many of the polyubiquitinated adducts produced at low histone concentration are larger than expected for monoubiquitination of every histone-lysine residue, and polyubiquitination is selectively inhibited by substitution of reductively methylated ubiquitin for ubiquitin. These results suggest that E235K uniquely catalyzes ubiquitin transfer to lysine residues of previously conjugated ubiquitin molecule(s). The implications of these results for biological mechanisms of histone ubiquitination are discussed.  相似文献   

8.
Non-degradative ubiquitylation plays a crucial role in many cellular signaling pathways, including the DNA damage response. Two ubiquitin ligases, RNF8 and RNF168, in combination with the E2 ubiquitin conjugating enzyme UBC13 catalyze the formation of K63-linked ubiquitin chains at sites of DNA double-strand breaks to promote their faithful repair. However, little is known about their negative regulation. A recent study identifies a deubiquitylating enzyme, OTUB1, which counteracts RNF8/RNF168-dependent ubiquitin chain formation at break sites. Surprisingly, this enzyme carries out its function not by cleavage of polyubiquitin chains, but by targeting UBC13. This non-canonical role for a deubiquitylating enzyme has implications for the regulation of ubiquitylation not just in DNA repair, but potentially in many other cellular signaling processes.  相似文献   

9.
Histone ubiquitination regulates sperm formation and is important for nucleosome removal during spermatogenesis. RNF8 is an E3 ubiquitin ligase, and RAD6B is an E2 ubiquitin-conjugating enzyme. Both proteins participate in DNA damage repair processes via histone ubiquitination. Loss of RNF8 or RAD6B can lead to sterility in male mice. However, the specific mechanisms regulating these ubiquitin-mediated processes are unclear. In this study, we found that RNF8 knockout mice were either subfertile or sterile based on the numbers of offspring they produced. We explored the mechanism by which RAD6B and RNF8 knockouts cause infertility in male mice and compared the effects of their loss on spermatogenesis. Our results demonstrate that RAD6B can polyubiquitinate histones H2 A and H2B. In addition, RNF8 was shown to monoubiquitinate histones H2 A and H2B. Furthermore, we observed that absence of histone ubiquitination was not the only reason for infertility. Senescence played a role in intensifying male sterility by affecting the number of germ cells during spermatogenesis. In summary, both histone ubiquitination and senescence play important roles in spermatogenesis.  相似文献   

10.
Histone ubiquitination regulates the chromatin structure that is important for many biological processes. Recently, ubiquitination of histones was observed during the DNA damage response (DDR), and this modification is controlled by really interesting new gene (RING) domain E3 ligase, RNF8. Together with the E2 conjugating enzyme UBC13, RNF8 catalyzes ubiquitination of the histones H2A and H2AX during the DDR, thus facilitating downstream recruitment of DDR factors, such as p53 binding protein 1 (53BP1) and breast cancer type 1 susceptibility protein (BRCA1), to the damage site. Accordingly, the RNF8 knockout mice display phenotypes associated with failed DDR, including hypersensitivity to ionizing radiation, V(D)J recombination deficiency, and a predisposition to cancer. In addition to the DDR phenotypes, RNF8 knockout mice fail to generate mature sperm during spermatogenesis, resulting in male sterility. The RNF8 knockout mice also have a drastic reduction in histone ubiquitination in the testes. These findings indicate that the role of histone ubiquitination during chromatin remodeling in two different biological events could be linked by an RNF8-dependent mechanism. Here, we review the molecular mechanism of RNF8-dependent histone ubiquitination both in DDR and spermatogenesis.  相似文献   

11.
The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.  相似文献   

12.
13.
14.
DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. In response to DSBs, cells initiate a complex response that minimizes their deleterious impact on cellular and organismal physiology. In this review, we discuss the discovery of a regulatory ubiquitylation system that modifies the chromatin that surrounds DNA lesions. This pathway is under the control of RNF8 and RNF168, two E3 ubiquitin ligases that cooperate with UBC13 to promote the relocalization of 53BP1 and BRCA1 to sites of DNA damage. RNF8 and RNF168 orchestrate the recruitment of DNA damage response proteins by catalyzing the ubiquitylation of H2A-type histones and the formation of K63-linked ubiquitin chains on damaged chromatin. Finally, we identify some unresolved issues raised by the discovery of this pathway and discuss the implications of DNA damage-induced ubiquitylation in human disease and development.  相似文献   

15.
Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.  相似文献   

16.
细胞内DNA会受部分外界因素(如紫外辐射,电离辐射和化学毒素)和内部因素(如复制错误)的影响而发生损伤,包括DNA双链断裂、DNA错配和DNA交链等。DNA损伤发生后,损伤部位会被一些蛋白识别,进而招募一系列蛋白至损伤部位,形成一个修复系统。DNA双链断裂是最严重的一种DNA损伤,错误修复往往导致疾病的发生。DNA双链断裂(double strand break, DSB)后,细胞启动RNF8/RNF168信号通路进行修复。RNF8和RNF168是这条通路的枢纽蛋白;53BP和BRCA1是关键的效应蛋白,决定着DSB修复的方式;组蛋白泛素化、磷酸化和甲基化等翻译后修饰是这条通路顺利进行的基本条件;染色质重塑、泛素化酶/去泛素化酶平衡和蛋白稳定性是这条通路的主要调节方式。本综述对RNF8/RNF168信号通路进行了梳理总结,希望其能对相关研究者起到参考作用。  相似文献   

17.
The E3 ubiquitin ligase RNF168 is a DNA damage response (DDR) factor that promotes monoubiquitination of H2A/H2AX at K13/15, facilitates recruitment of other DDR factors (e.g. 53BP1) to DNA damage, and inhibits homologous recombination (HR) in cells deficient in the tumor suppressor BRCA1. We have examined the domains of RNF168 important for these DDR events, including chromosomal HR that is induced by several nucleases (I-SceI, CAS9-WT and CAS9-D10A), since the inducing nuclease affects the relative frequency of distinct repair outcomes. We found that an N-terminal fragment of RNF168 (1-220/N221*) efficiently inhibits HR induced by each of these nucleases in BRCA1 depleted cells, and promotes recruitment of 53BP1 to DNA damage and H2AX monoubiquitination at K13/15. Each of these DDR events requires a charged residue in RNF168 (R57). Notably, RNF168-N221* fails to self-accumulate into ionizing radiation induced foci (IRIF). Furthermore, expression of RNF168 WT and N221* can significantly bypass the role of another E3 ubiquitin ligase, RNF8, for inhibition of HR in BRCA1 depleted cells, and for promotion of 53BP1 IRIF. We suggest that the ability for RNF168 to promote H2A/H2AX monoubiquitination and 53BP1 IRIF, but not RNF168 self-accumulation into IRIF, is important for inhibition of HR in BRCA1 deficient cells.  相似文献   

18.
Ubiquitylation of histone H2B and/or a component of the system that ubiquitylates H2B is required for methylation of histone H3 at lysine 4 (H3K4) in yeasts and probably in humans. In this study, the single ubiquitylation site was mapped to conserved lysine 115 of the C-terminal region of histone H2B in the single-cell model organism Tetrahymena thermophila. In strains lacking H2B ubiquitylation, H3K4 methylation was not detectably affected. As in other organisms, the E2 ubiquitin-conjugating enzyme Ubc2 and the E3 ubiquitin ligase Bre1 were required for H2B ubiquitylation. However, neither enzyme was required for H3K4 methylation. These studies argue that, in T. thermophila, the histone ubiquitylation mechanism is not required for H3K4 methylation, demonstrating that different organisms can speak different languages in the “cross-talk” among post-translational modifications on different histones.  相似文献   

19.
Jin X  Cheng H  Chen J  Zhu D 《The FEBS journal》2011,278(1):78-84
Protein ubiquitination mediated by ubiquitin ligases plays a very important role in a wide spectrum of biological processes including development and disease pathogenesis. RING finger protein 13 (RNF13) is a recently identified ubiquitin ligase which contains an N-terminal protease-associated domain and a C-terminal RING finger domain separated by a transmembrane region. RNF13 is an evolutionarily conserved protein. Most interestingly, RNF13 expression is developmentally regulated during myogenesis and is upregulated in various human tumors. These data suggest that RNF13, acting as an ubiquitin ligase, might have profound biological functions during development and disease. This minireview summarizes recent work on RNF13 functions related to cell proliferation, differentiation and cancer development.  相似文献   

20.
Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response   总被引:1,自引:0,他引:1  
Histone ubiquitination participates in multiple cellular processes, including the DNA damage response. However, the molecular mechanisms involved are not clear. Here, we have identified that RAP80/UIMC1 (ubiquitin interaction motif containing 1), a functional partner of BRCA1, recognizes ubiquitinated histones H2A and H2B. The interaction between RAP80 and ubiquitinated histones H2A and H2B is increased following DNA damage. Since RAP80 facilitates BRCA1's translocation to DNA damage sites, our results indicate that ubiquitinated histones H2A and H2B could be upstream partners of the BRCA1/RAP80 complex in the DNA damage response. Moreover, we have found that RNF8 (ring finger protein 8), an E3 ubiquitin ligase, regulates ubiquitination of both histones H2A and H2B. In RNF8-deficient mouse embryo fibroblasts, ubiquitination of both histones H2A and H2B is dramatically reduced, which abolishes the DNA damage-induced BRCA1 and RAP80 accumulation at damage lesions on the chromatin. Taken together, our results suggest that ubiquitinated histones H2A and H2B may recruit the BRCA1 complex to DNA damage lesions on the chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号