首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  相似文献   

2.
The extracellular matrix (ECM) of bone consists mainly of collagen type I, which induces osteoblastic differentiation and prevents apoptosis. Fas induces apoptosis in cells improperly adhering to ECM. Recently, it was described that Fas expression is modulated by epigenetic DNA methylation. Mouse MC3T3-E1 pre-osteoblastic cells were cultured either on collagen coated or on uncoated culture dishes for control. mRNA was isolated and gene expression was analyzed by quantitative RT–PCR. Furthermore, we measured global and specific DNA methylation. Compared to controls, cells cultured on collagen-coated dishes increased the expression of Runx2 and OCN indicating differentiation of pre-osteoblastic cells. Additionally, collagen up-regulated cyclin-A2 and down-regulated Fas expression suggesting increased cell multiplication. Furthermore, the expression of Dnmt1 and Hells, key mediators of the DNA-methylation process, was increased. As a consequence, we demonstrate that global DNA methylation and specific methylation of the Fas promoter was higher in MC3T3-E1 cells cultured on collagen when compared to controls. Investigation of signal transduction pathways by mean of inhibitors suggests that focal adhesion kinase, MAP- and Jun-kinases and AP-1 are involved in this process. In summary, we demonstrate that ECM prevents activation of Fas by epigenetic DNA-methylation.  相似文献   

3.
DNA methyltransferase 3B (DNMT3B) is critically involved in de novo DNA methylation and genomic stability, while the regulatory mechanism in liver is largely unknown. We previously reported that diurnal variation occurs in the mRNA expression of Dnmt3b in adult mouse liver. The aim of this study was to determine the mechanism underlying the diurnal expression pattern. The highest level and the lowest level of Dnmt3b mRNA expression were confirmed to occur at dawn and in the afternoon, respectively, and the expression pattern of Dnmt3b closely coincided with that of Bmal1. Since the diurnal pattern of Dnmt3b mRNA expression developed at weaning and scheduled feeding to separate the feeding cycle from the light/dark cycle led to a phase-shift in the expression, it could be assumed that feeding plays a critical role as an entrainment signal. In liver-specific Bmal1 knockout (L-Bmal1 KO) mice, L-Bmal1 deficiency resulted in significantly higher levels of Dnmt3b at all measured time points, and the time when the expression was the lowest in wild-type mice was shifted to earlier. Investigation of global DNA methylation revealed a temporal decrease of 5-methyl-cytosine percentage in the genome of wild-type mice in late afternoon. By contrast, no such decrease in 5-methyl-cytosine percentage was detected in L-Bmal1 KO mice, suggesting that altered Dnmt3b expression affects the DNA methylation state. Taken together, the results suggest that the feeding and hepatic clockwork generated by the clock genes, including Bmal1, regulate the diurnal variation in Dnmt3b mRNA expression and the consequent dynamic changes in global DNA methylation.  相似文献   

4.
5-Hydroxymethylcytosine (5-hmC) generated by ten-eleven translocation 1–3 (TET1–3) enzymes is an epigenetic mark present in many tissues with different degrees of abundance. IL-1β and TNF-α are the two major cytokines present in arthritic joints that modulate the expression of many genes associated with cartilage degradation in osteoarthritis. In the present study, we investigated the global 5-hmC content, the effects of IL-1β and TNF-α on 5-hmC content, and the expression and activity of TETs and isocitrate dehydrogenases in primary human chondrocytes. The global 5-hmC content was found to be ∼0.1% of the total genome. There was a significant decrease in the levels of 5-hmC and the TET enzyme activity upon treatment of chondrocytes with IL-1β alone or in combination with TNF-α. We observed a dramatic (10–20-fold) decrease in the levels of TET1 mRNA expression and a small increase (2–3-fold) in TET3 expression in chondrocytes stimulated with IL-1β and TNF-α. IL-1β and TNF-α significantly suppressed the activity and expression of IDHs, which correlated with the reduced α-ketoglutarate levels. Whole genome profiling showed an erasure effect of IL-1β and TNF-α, resulting in a significant decrease in hydroxymethylation in a myriad of genes including many genes that are important in chondrocyte physiology. Our data demonstrate that DNA hydroxymethylation is modulated by pro-inflammatory cytokines via suppression of the cytosine hydroxymethylation machinery. These data point to new mechanisms of epigenetic control of gene expression by pro-inflammatory cytokines in human chondrocytes.  相似文献   

5.
Disruption of apoptosis is considered as an important factor aiding tumorigenesis, and aberrant DNA methylation of apoptosis-associated genes could be an important and significant mechanism through which tumor cells avoid apoptosis. However, little is known about (1) the impact of methylation status of apoptosis-associated genes on the presence of apoptosis evasion phenotype in glioma; and (2) the molecular mechanism governing the aberrant methylation of apoptosis-associated genes in glioma. By analyzing human glioma biopsies, we first show that low level of apoptosis in tumor is correlated with aberrant methylation of the bcl-2, bax and XAF-1 genes, but not with the aberrant methylation of the bcl-w, survivin, TMS1, caspase-8 and HRK genes. Our work also indicates that the expression levels of DNA methyltransferase 1 (Dnmt1), Dnmt3b and Dnmt1/Dnmt3a coregulate the methylation status of survivin, TMS1 and caspase-8, whereas no correlation was observed between the expression level of Dnmts and the methylation status of the bcl-w, bcl-2, bax, XAF-1 and HRK genes. Thus, these results indicate that the epigenetic regulation of some apoptosis-regulated genes could dictate whether glioma harbors the apoptosis evasion phenotype, and provide some bases to the identification of the methylation machineries of apoptosis-associated genes for which the Dnmt expression acts as a limiting factor.  相似文献   

6.
《Epigenetics》2013,8(9):1046-1056
DNA methyltransferase 3B (DNMT3B) is critically involved in de novo DNA methylation and genomic stability, while the regulatory mechanism in liver is largely unknown. We previously reported that diurnal variation occurs in the mRNA expression of Dnmt3b in adult mouse liver. The aim of this study was to determine the mechanism underlying the diurnal expression pattern. The highest level and the lowest level of Dnmt3b mRNA expression were confirmed to occur at dawn and in the afternoon, respectively, and the expression pattern of Dnmt3b closely coincided with that of Bmal1. Since the diurnal pattern of Dnmt3b mRNA expression developed at weaning and scheduled feeding to separate the feeding cycle from the light/dark cycle led to a phase-shift in the expression, it could be assumed that feeding plays a critical role as an entrainment signal. In liver-specific Bmal1 knockout (L-Bmal1 KO) mice, L-Bmal1 deficiency resulted in significantly higher levels of Dnmt3b at all measured time points, and the time when the expression was the lowest in wild-type mice was shifted to earlier. Investigation of global DNA methylation revealed a temporal decrease of 5-methyl-cytosine percentage in the genome of wild-type mice in late afternoon. By contrast, no such decrease in 5-methyl-cytosine percentage was detected in L-Bmal1 KO mice, suggesting that altered Dnmt3b expression affects the DNA methylation state. Taken together, the results suggest that the feeding and hepatic clockwork generated by the clock genes, including Bmal1, regulate the diurnal variation in Dnmt3b mRNA expression and the consequent dynamic changes in global DNA methylation.  相似文献   

7.
For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases. Significantly, intactness of the C methylation catalytic sites of these de novo enzymes is also required for their 5-hmC dehydroxymethylation activity. That DNMT3A and DNMT3B function bidirectionally both as DNA methyltransferases and as dehydroxymethylases raises intriguing and new questions regarding the structural and functional aspects of these enzymes and their regulatory roles in the dynamic modifications of the vertebrate genomes during development, carcinogenesis, and gene regulation.  相似文献   

8.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

9.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

10.
In mammals, DNA methylation is crucial for embryonic development and germ cell differentiation. The DNA methylation patterns are created by de novo-type DNA methyltransferases (Dnmts) 3a and 3b. Dnmt3a is crucial for global methylation, including that of imprinted genes in germ cells. In eukaryotic nuclei, genomic DNA is packaged into multinucleosomes with linker histone H1, which binds to core nucleosomes, simultaneously making contacts in the linker DNA that separates adjacent nucleosomes. In the present study, we prepared oligonucleosomes from HeLa nuclei with or without linker histone H1 and used them as a substrate for Dnmt3a. Removal of histone H1 enhanced the DNA methylation activity. Furthermore, Dnmt3a preferentially methylated the linker between the two nucleosome core regions of reconstituted dinucleosomes, and the binding of histone H1 inhibited the DNA methylation activity of Dnmt3a towards the linker DNA. Since an identical amount of histone H1 did not inhibit the activity towards naked DNA, the inhibitory effect of histone H1 was not on the Dnmt3a catalytic activity but on its preferential location in the linker DNA of the dinucleosomes. The central globular domain and C-terminal tail of the histone H1 molecule were indispensable for inhibition of the DNA methylation activity of Dnmt3a. We propose that the binding and release of histone H1 from the linker portion of chromatin may regulate the local DNA methylation of the genome by Dnmt3a, which is expressed ubiquitously in somatic cells in vivo.  相似文献   

11.
MicroRNA‐29b (miR‐29b) is a member of the miR‐29 family, which targets DNA methyltransferases (DNMTs) and ten eleven translocation enzymes (TETs), thereby regulating DNA methylation. However, the role of miR‐29b in porcine early embryo development has not been reported. In this study, we examined the effects of miR‐29b in porcine in vitro fertilization (IVF) embryos to investigate the mechanism by which miR‐29b regulated DNA methylation. The interference of miR‐29b by its special miRNA inhibitor significantly up‐regulated Dnmt3a/b and Tet1 but downregulated Tet2/3; meanwhile it increased DNA methylation levels of the global genome and Nanog promoter region but decreased global DNA demethylation levels. The inhibition of miR‐29b also resulted in a decrease in the development rate and quality of blastocysts. In addition, the pluripotency genes Nanog and Sox2 were significantly downregulated, and the apoptosis genes Bax and Casp3 were upregulated, but anti‐apoptosis gene Bcl‐2 was downregulated in blastocysts. Our study indicated that miR‐29b could regulate DNA methylation mediated by miR29b‐ Dnmt3a/bTet1/2/3 signaling during porcine early embryo development.  相似文献   

12.
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.  相似文献   

13.
Daily Variation in Global and Local DNA Methylation in Mouse Livers   总被引:1,自引:0,他引:1  
DNA methylation is one of the best-characterized epigenetic modifications and has an important biological relevance. Here we showed that global DNA methylation level in mouse livers displayed a daily variation where the peak phases occurred during the end of the day and the lowest level at the beginning of the day in the light-dark or dark-dark cycles. Typical repeat sequence long interspersed nucleotide element-1 (LINE-1) had a similar methylation rhythm to global DNA. DNA methyltransferase 3A (DNMT3A) and ratio of S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) brought a relative forward daily variation to global DNA methylation, and the temporary change in ratio of SAM to SAH had no influence on the DNA methylation level. The rhythm of global DNA methylation was lost and DNA methylation level was increased in Per1-/-Per2-/- double knockout mice, which were in accordance with changes of Dnmt3a mRNA levels and its rhythm. Our results suggest that the daily variation in global DNA methylation was associated with the change of Dnmt3a expression rather than ratio of SAM to SAH.  相似文献   

14.
15.
Novel DNA intercalating anticancer drug curaxin CBL0137 significantly inhibited in vitro DNA methylation by eukaryotic DNA methyltransferase Dnmt3a catalytic domain (Dnmt3a-CD) at low micromolar concentrations (IC50 3–9 µM). CBL0137 reduced the binding affinity of Dnmt3a-CD to its DNA target, causing up to four-fold increase in the Kd of the enzyme/DNA complex. Binding of CBL0137 to Dnmt3a-CD was not observed. The observed decrease in methylation activity of Dnmt3a-CD in the presence of CBL0137 can be explained by curaxin’s ability to intercalate into DNA.  相似文献   

16.
17.
18.
Yuan LQ  Liu YS  Luo XH  Guo LJ  Xie H  Lu Y  Wu XP  Liao EY 《Amino acids》2008,35(1):123-127
Tissue inhibitor of metalloproteinases (TIMPs) plays an essential role in the regulation of bone metabolism. Here we report that recombinant tissue metalloproteinase inhibitor-3 (TIMP-3) protein induces the apoptosis of MC3T3-E1 osteoblasts. Cell apoptosis was detected by sandwich-enzyme-immunoassay. Fas and Fasl protein levels were determined by Western blot analysis. The enzyme substrate was used to assess the activation of caspase-3 and caspase-8. The phosphorylation of JNK, p38 and ERK1/2 was examined by Western blot analysis. The ELISA suggested that TIMP-3 promoted MC3T3-E1 cell apoptosis. TIMP-3 treatment induced the expression of Fas and Fasl proteins, and the activation of caspase-8 and caspase-3. TIMP-3 treatment induced p38 and ERK phosphorylation. SB203580 and PD98059, the inhibitor of p38 and ERK, respectively, abolished the TIMP-3 effect on osteoblast apoptosis. In conclusion, the signal pathway through which TIMP-3 induces MC3T3-E1 cell apoptosis, mediated by Fas and involves the p38 and ERK signal transduction pathways.  相似文献   

19.

Background

The DNA demethylating agent 5-aza-2′-deoxycytidine (5-aza-CdR) incorporates into DNA and decreases DNA methylation, sparking interest in its use as a potential therapeutic agent. We aimed to determine the effects of maternal 5-aza-CdR treatment on embryo implantation in the mouse and to evaluate whether these effects are associated with decreased levels of DNA methyltransferases (Dnmts) and three genes (estrogen receptor α [Esr1], progesterone receptor [Pgr], and homeobox A10 [Hoxa10]) that are vital for control of endometrial changes during implantation.

Methods and Principal Findings

Mice treated with 5-aza-CdR had a dose-dependent decrease in number of implantation sites, with defected endometrial decidualization and stromal cell proliferation. Western blot analysis on pseudo-pregnant day 3 (PD3) showed that 0.1 mg/kg 5-aza-CdR significantly repressed Dnmt3a protein level, and 0.5 mg/kg 5-aza-CdR significantly repressed Dnmt1, Dnmt3a, and Dnmt3b protein levels in the endometrium. On PD5, mice showed significantly decreased Dnmt3a protein level with 0.1 mg/kg 5-aza-CdR, and significantly decreased Dnmt1 and Dnmt3a with 0.5 mg/kg 5-aza-CdR. Immunohistochemical staining showed that 5-aza-CdR repressed DNMT expression in a cell type–specific fashion within the uterus, including decreased expression of Dnmt1 in luminal and/or glandular epithelium and of Dnmt3a and Dnmt3b in stroma. Furthermore, the 5′ flanking regions of the Esr1, Pgr, and Hoxa10 were hypomethylated on PD5. Interestingly, the higher (0.5 mg/kg) dose of 5-aza-CdR decreased protein expression of Esr1, Pgr, and Hoxa10 in the endometrium on PD5 in both methylation-dependent and methylation-independent manners.

Conclusions

The effects of 5-aza-CdR on embryo implantation in mice were associated with altered expression of endometrial Dnmts and genes controlling endometrial changes, suggesting that altered gene methylation, and not cytotoxicity alone, contributes to implantation defects induced by 5-aza-CdR.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号