首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration.   总被引:19,自引:0,他引:19  
Smooth muscle cells are exposed to growth factors and cytokines that contribute to pathological states including airway hyperresponsiveness, atherosclerosis, angiogenesis, smooth muscle hypertrophy, and hyperplasia. A common feature of several of these conditions is migration of smooth muscle beyond the initial boundary of the organ. Signal transduction pathways activated by extracellular signals that instigate migration are mostly undefined in smooth muscles. We measured migration of cultured tracheal myocytes in response to platelet-derived growth factor, interleukin-1beta, and transforming growth factor-beta. Cellular migration was blocked by SB203580, an inhibitor of p38(MAPK). Time course experiments demonstrated increased phosphorylation of p38(MAPK). Activation of p38(MAPK) resulted in the phosphorylation of HSP27 (heat shock protein 27), which may modulate F-actin polymerization. Inhibition of p38(MAPK) activity inhibited phosphorylation of HSP27. Adenovirus-mediated expression of activated mutant MAPK kinase 6b(E), an upstream activator for p38(MAPK), increased cell migration, whereas overexpression of p38alpha MAPK dominant negative mutant and an HSP27 phosphorylation mutant blocked cell migration completely. The results indicate that activation of the p38(MAPK) pathway by growth factors and proinflammatory cytokines regulates smooth muscle cell migration and may contribute to pathological states involving smooth muscle dysfunction.  相似文献   

2.
Certain G protein-coupled receptors (GPCRs) stimulate the activities of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), members of the MAPK family. We investigated the role of JNK and p38 MAPK activation induced by the alpha1B-adrenergic receptor in the proliferation of human embryonic kidney 293T cells. Activation of the alpha1B-adrenergic receptor resulted in inhibition of cell proliferation. This receptor-induced inhibition of proliferation was blocked by a kinase-deficient MKK4 and by the p38 MAPK inhibitor SB203580. Additionally, transfection of constitutively activated Galphaq into cells also led to inhibition of proliferation in a JNK- and p38 MAPK-dependent manner. These results demonstrate that the alpha1B-adrenergic receptor/Galphaq signaling inhibits cell proliferation through pathways involving JNK and p38 MAPK.  相似文献   

3.
Adenosine monophosphate-activated protein kinase (AMPK) is a well-known serine/threonine kinase that has been implicated in modulation of glucose and fatty acid metabolism. Recent reports have also implicated AMPK in modulation of mucin secretion. In this study, the effects and signaling pathways of AMPK on MUC5B expression were investigated in human NCI-H292 airway epithelial cells. Metformin, as an activator of AMPK, induced MUC5B expression in a dose-dependent manner. Compound C, as an inhibitor of AMPK, inhibited metformin-induced MUC5B expression in a dose-dependent manner. Metformin significantly activated phosphorylation of AMPK; compound C inhibited metformin-activated phosphorylation of AMPK. Without treatment with metformin, there was no difference in MUC5B mRNA expression between Ad-dnAMPK transfected and wild-type adenovirus transfected NCI-H292 cells. However, after treatment with metformin, MUC5B mRNA expression was increased in wild-type adenovirus transfected NCI-H292 cells; MUC5B mRNA expression was significantly decreased in Ad-dnAMPK transfected NCI-H292 cells. Metformin activated phosphorylation of p38 mitogen-activated protein kinase (MAPK); compound C inhibited metformin-activated phosphorylation of p38 MAPK. SB203580, as an inhibitor of p38 MAPK, significantly inhibited metformin-induced MUC5B mRNA expression, while U0126, as an inhibitor of ERK1/2 MAPK, had no effect. In addition, knockdown of p38 MAPK by p38 MAPK siRNA significantly blocked metformin-induced MUC5B mRNA expression. In conclusion, results of this study show that AMPK induces MUC5B expression through the p38 MAPK signaling pathway in airway epithelial cells.  相似文献   

4.
Nitric oxide exerts a stimulatory role during postnatal angiogenesis. Although soluble guanylyl cyclase (sGC) mediates many of the effects of nitric oxide (NO) in the vascular system, the contribution of cGMP-dependent vs cGMP-independent pathways in NO-induced angiogenesis remains unclear. Herein, we determined the effects of a NO donor (sodium nitroprusside; SNP) and a NO-independent sGC activator (BAY 41-2272) in the growth and migration of rat aortic endothelial cells (RAEC). RAEC lack enzymatically active sGC as suggested by their inability to accumulate cGMP upon exposure to SNP. However, treatment of RAEC with SNP promoted a modest increase in their proliferation and migration that was dependent on extracellular signal regulated kinase1/2 activation. Moreover, when RAEC were exposed to vascular endothelial growth factor we observed an increase in migration that was inhibited by NO synthase, but not sGC, inhibition. Infection of cells with adenoviruses containing sGC greatly increased the efficacy of SNP as a mitogenic and migratory stimulus. We conclude that NO is capable of stimulating EC proliferation and mobility in the absence of sGC; however, increased intracellular levels of cGMP following sGC activation greatly amplify the angiogenic potential of NO.  相似文献   

5.
6.
Adiponectin is the most abundant adipokine secreted from adipocytes. Accumulating evidence suggests that the physiological roles of adiponectin go beyond its metabolic effects. In the present study, we demonstrate that adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) are expressed in adult hippocampal neural stem/progenitor cells (hNSCs). Adiponectin treatment increases proliferation of cultured adult hNSCs in a dose- and time-dependent manner, whereas apoptosis and differentiation of adult hNSCs into neuronal or glial lineage were not affected. Adiponectin activates AMP-activated protein kinase and p38 mitogen-activated protein kinase (p38MAPK) signaling pathways in adult hNSCs. Pretreatment with the p38MAPK inhibitor SB203580, but not the AMP-activated protein kinase inhibitor Compound C, attenuates adiponectin-induced cell proliferation. Moreover, adiponectin induces phosphorylation of Ser-389, a key inhibitory site of glycogen synthase kinase 3β (GSK-3β), and this effect can be blocked by inhibition of p38MAPK with SB203580. Levels of total and nuclear β-catenin, the primary substrate of GSK-3β, were increased by adiponectin treatment. These results indicate that adiponectin stimulates proliferation of adult hNSCs, via acting on GSK-3β to promote nuclear accumulation of β-catenin. Thus, our studies uncover a novel role for adiponectin signaling in regulating proliferation of adult neural stem cells.  相似文献   

7.
Elevation of blood homocysteine levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. One of the mechanisms by which homocysteine induces atherosclerosis is to promote the proliferation of vascular smooth muscle cells (VSMCs) in a reactive oxygen species (ROS)-dependent manner. It has been shown that homocysteine induces the production of ROS through the activation of NAD(P)H oxidases in VSMCs. In this study, we investigated the signal transduction pathways involved in the activation of NAD(P)H oxidases. Homocysteine promoted DNA synthesis in VSMCs. Inhibition of ROS by N-acetyl-L-cysteine (an antioxidant) and apocynin (an inhibitor of NAD(P)H oxidases) significantly blocked homocysteine-induced proliferation in VSMCs. Homocysteine induced a rapid increase in the phosphorylation of p38-mitogen-activated protein kinase (p38 MAPK). p38 MAPK in turn activated NAD(P)H oxidases by inducing the phosphorylation of p47phox, resulting in the generation of ROS. ROS induced the phosphorylation of Akt, which was probably responsible for proliferation in VSMCs. These findings demonstrate that homocysteine induces an increase in the activity of NAD(P)H oxidases in VSMCs by activating p38 MAPK and enhancing the phosphorylation of p47phox.  相似文献   

8.
Although hepatic myofibroblast migration plays a key role in the liver's injury response, the signal transduction pathways mediating the migration of this cell type are uncertain. Recently, we reported that lysophosphatidic acid (LPA) stimulates the migration of hepatic myofibroblasts. The goal of this study was to test the hypothesis that rho and p38 MAP kinase signaling pathways mediate LPA-stimulated hepatic myofibroblast migration. We measured migration, myosin regulatory light chain and p38 MAP kinase phosphorylation, and contractile force generation by human hepatic myofibroblasts. LPA stimulated migration in a dose-dependent and saturable manner that was partially blocked by Y-27632, a rho-associated kinase inhibitor, as well as by SB-202190, a p38 MAP kinase inhibitor. LPA also induced myosin regulatory light chain phosphorylation and contractile force generation in a Y-27632 dependent, and SB-202190 independent fashion. Moreover, LPA stimulated a dose-dependent and saturable phosphorylation of p38 MAP kinase, which was not altered by Y-27632 or C3 transferase, a rho inactivator. These novel results suggest that LPA stimulates hepatic myofibroblast migration via distinct pathways that signal through rho and p38 MAP kinase.  相似文献   

9.
Phosphorylation of epidermal growth factor receptor (EGFR) on tyrosine 845 by c-Src has been shown to be important for cell proliferation and migration in several model systems. This cross talk between EGFR and Src family kinases (SFKs) is one mechanism for resistance to EGFR inhibitors both in cell models and in the clinic. Here, we show that phosphorylation of tyrosine 845 on EGFR is required for proliferation and transformation using several cell models of breast cancer. Overexpression of EGFR-Y845F or treating cells with the SFK inhibitor dasatinib abrogated tyrosine 845 phosphorylation, yet had little to no effect on other EGFR phosphorylation sites or EGFR kinase activity. Abrogation of Y845 phosphorylation inhibited cell proliferation and transformation, even though extracellular signal-regulated kinase (ERK) and Akt remained active under these conditions. Importantly, cotransfection of mitogen-activated protein kinase (MAPK) kinase 3 and p38 MAPK restored cell proliferation in the absence of EGFR tyrosine 845 phosphorylation. Taken together, these data demonstrate a novel role for p38 MAPK signaling downstream of EGFR tyrosine 845 phosphorylation in the regulation of breast cancer cell proliferation and transformation and implicate SFK inhibitors as a potential therapeutic mechanism for overcoming EGFR tyrosine kinase inhibitor resistance in breast cancer.  相似文献   

10.
Kanda Y  Nishio E  Kuroki Y  Mizuno K  Watanabe Y 《Life sciences》2001,68(17):1989-2000
Thrombin is a potent mitogen for vascular smooth muscle cells. However, the signaling pathways by which thrombin mediates its mitogenic response are not fully understood. The ERK (extracellular signal-regulated protein kinase) and JNK (c-Jun N-terminal kinase) members of the mitogen-activated protein kinase (MAPK) family are reported to be activated by thrombin. We have investigated the response to thrombin of another member of the MAPK family, p38 MAPK, which has been suggested to be activated by both stress and inflammatory stimuli in vascular smooth muscle cells. We found that thrombin induced time- and dose-dependent activation of p38 MAPK. Maximal stimulation of p38 MAPK was observed after a 10-min incubation with 1 unit ml(-1) thrombin. GF109203X, a protein kinase C inhibitor, and prolonged treatment with phorbol 12-myristate 13-acetate partially inhibited p38 MAPK activation. A tyrosine kinase inhibitor, genistein, also inhibited p38 MAPK activation in a dose-dependent manner. p38 MAPK activation was inhibited by overexpression of betaARK1ct (beta-adrenergic receptor kinase I C-terminal peptide). p38 MAPK activation was also inhibited by expression of dominant-negative Ras, not by dominant-negative Rac. We next examined the effect of a p38 MAPK inhibitor, SB203580, on thrombin-induced proliferation. SB203580 inhibited thrombin-induced DNA synthesis in a dose-dependent manner. These results suggest that thrombin activates p38 MAPK in a manner dependent on Gbetagamma, protein kinase C, a tyrosine kinase, and Ras, that p38 MAPK has a role in thrombin-induced mitogenic response in the cells.  相似文献   

11.
Negative feedback is among the key mechanisms for regulating receptor tyrosine kinase (RTK) signaling. Human Sef, a recently identified inhibitor of RTK signaling, encodes different isoforms, including a membrane spanning (hSef-a) and a cytosolic (hSef-b) isoform. Previously, we reported that hSef-b inhibited fibroblast proliferation and prevented the activation of mitogen-activated protein kinase (MAPK), without affecting protein kinase B/Akt or p38 MAPK. Conflicting results were reported concerning hSef-a inhibition of MAPK activation, and the effect of hSef-a on other RTK-induced signaling pathways is unknown. Here we show that, in fibroblasts, similar to hSef-b, ectopic expression of hSef-a inhibited fibroblast growth factor-induced cell proliferation. Unlike hSef-b, however, the growth arrest was mediated via a MAPK-independent mechanism, and was accompanied by elevated p38 MAPK phosphorylation and inhibition of protein kinase B/Akt. In addition, hSef-a, but not hSef-b, mediated apoptosis in fibroblast growth factor-stimulated cells. Chemical inhibitor of p38 MAPK abrogated the effect of hSef-a on apoptosis. In epithelial cells, ectopic expression of hSef-a inhibited the activation of MAPK, whereas down-regulation of endogenous hSef-a significantly increased MAPK activation and accelerated growth factor-dependent cell proliferation. These results indicate that hSef-a is a multifunctional negative modulator of RTK signaling and clearly demonstrate that hSef-a can inhibit the activation of MAPK, although in a cell type-specific manner. Moreover, the differences between the activities of hSef-a and hSef-b suggest that hSef isoforms can control signal specificity and subsequent cell fate by utilizing different mechanisms to modulate RTK signaling.  相似文献   

12.
13.
We have previously shown the importance of LTB4 in human pancreatic cancer. LTB4 receptor antagonists block growth and induce apoptosis in pancreatic cancer cells both in vitro and in vivo. Therefore, we investigated the effect of LTB4 on proliferation of human pancreatic cancer cells and the mechanisms involved. LTB4 stimulated DNA synthesis and proliferation of both PANC-1 and AsPC-1 human pancreatic cancer cells, as measured by thymidine incorporation and cell number. LTB4 stimulated rapid and transient activation of MEK and ERK1/2 kinases. The MEK inhibitors, PD98059 and U0126, blocked LTB4-stimulated ERK1/2 activation and cell proliferation. LTB4 also stimulated phosphorylation of p38 MAPK; however, the p38 MAPK inhibitor, SB203580, failed to block LTB4-stimulated growth. The activity of JNK/SAPK was not affected by LTB4 treatment. Phosphorylation of Akt was also induced by LTB4 and this effect was blocked by the PI-3 kinase inhibitor wortmannin, which also partially blocked LTB4-stimulated cell proliferation. In conclusion, LTB4 stimulates proliferation of human pancreatic cancer cells through MEK/ERK and PI-3 kinase/Akt pathways, while p38 MPAK and JNK/SAPK are not involved.  相似文献   

14.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

15.
We reported previously an important role of cyclic AMP-response element (CRE) for the induction of interleukin-6 gene expression by angiotensin II (AngII). We examined signaling pathways that are responsible for AngII-induced phosphorylation of CRE-binding protein (CREB) at serine 133 that is a critical marker for the activation in rat vascular smooth muscle cells (VSMC). AngII time dependently induced phosphorylation of CREB with a peak at 5 min. The AngII-induced phosphorylation of CREB was blocked by CV11974, an AngII type I receptor antagonist, suggesting that AngII type I receptor may mediate the phosphorylation of CREB. Inhibition of extracellular signal-regulated protein kinase (ERK) by PD98059 or inhibition of p38 mitogen-activated protein kinase (MAPK) by SB203580 partially inhibited AngII-induced CREB phosphorylation. A protein kinase A inhibitor, H89, also partially suppressed AngII-induced CREB phosphorylation. Inhibition of epidermal growth factor-receptor by AG1478 suppressed the AngII-induced CREB phosphorylation as well as activation of ERK and p38MAPK. Overexpression of the dominant negative form of CREB by an adenovirus vector suppressed AngII-induced c-fos expression and incorporation of [(3)H]leucine to VSMC. These findings suggest that AngII may activate multiple signaling pathways involving two MAPK pathways and protein kinase A, all of which contribute to the activation of CREB. Transactivation of epidermal growth factor-receptor is also critical for AngII-induced CREB phosphorylation. Activation of CREB may be important for the regulation of gene expression and hypertrophy of VSMC induced by AngII.  相似文献   

16.
Changes in the cytoskeleton of endothelial cells (ECs) play important roles in mediating neutrophil migration during inflammation. Previous studies demonstrated that neutrophil adherence to TNF-alpha-treated pulmonary microvascular ECs induced cytoskeletal remodeling in ECs that required ICAM-1 ligation and oxidant production and was mimicked by cross-linking ICAM-1. In this study, we examined the role of ICAM-1-induced signaling pathways in mediating actin cytoskeletal remodeling. Cross-linking ICAM-1 induced alterations in ICAM-1 distribution, as well as the filamentous actin rearrangements and stiffening of ECs shown previously. ICAM-1 cross-linking induced phosphorylation of the p38 mitogen-activated protein kinase (MAPK) that was inhibited by allopurinol and also induced an increase in the activity of the p38 MAPK that was inhibited by SB203580. However, SB203580 had no effect on oxidant production in ECs or ICAM-1 clustering. ICAM-1 cross-linking also induced phosphorylation of heat shock protein 27, an actin-binding protein that may be involved in filamentous actin polymerization. The time course of heat shock protein 27 phosphorylation paralleled that of p38 MAPK phosphorylation and was completely inhibited by SB203580. In addition, SB203580 blocked the EC stiffening response induced by either neutrophil adherence or ICAM-1 cross-linking. Moreover, pretreatment of ECs with SB203580 reduced neutrophil migration toward EC junctions. Taken together, these data demonstrate that activation of p38 MAPK, mediated by xanthine oxidase-generated oxidant production, is required for cytoskeletal remodeling in ECs induced by ICAM-1 cross-linking or neutrophil adherence. These cytoskeletal changes in ECs may in turn modulate neutrophil migration toward EC junctions.  相似文献   

17.
Phosphodiesterase 5 (PDE5) inhibitors are often used in combination with club drugs such as 3,4‐methylenedioxymethamphetamine (MDMA or ecstasy). We investigated the consequences of such combination in the serotonergic system of the rat. Oral administration of sildenafil citrate (1.5 or 8 mg/kg) increased brain cGMP levels and protected in a dose‐dependent manner against 5‐hydroxytryptamine depletions caused by MDMA (3 × 5 mg/kg, i.p., every 2 h) in the striatum, frontal cortex and hippocampus without altering the acute hyperthermic response to MDMA. Intrastriatal administration of the protein kinase G (PKG) inhibitor, KT5823 [(9S, 10R, 12R)‐2,3,9,10,11,12‐Hexahydro‐10‐methoxy‐2,9‐dimethyl‐1‐oxo‐9,12‐epoxy‐1H‐diindolo[1,2,3‐fg:3′,2′,1′‐kl]pyrrolo[3,4‐i][1,6]benzodiazocine‐10‐carboxylic acid, methyl ester)], suppressed sildenafil‐mediated protection. By contrast, the cell permeable cGMP analogue, 8‐bromoguanosine cyclic 3′,5′‐monophosphate, mimicked sildenafil effects further suggesting the involvement of the PKG pathway in mediating sildenafil protection. Because mitochondrial ATP‐sensitive K+ channels are a target for PKG, we next administered the specific mitochondrial ATP‐sensitive K+ channel blocker, 5‐hydroxydecanoic acid, 30 min before sildenafil. 5‐hydroxydecanoic acid completely reversed the protection afforded by sildenafil, thereby implicating the involvement of mitochondrial ATP‐sensitive K+ channels. Sildenafil also increased Akt phosphorylation, and so the possible involvement of the Akt/endothelial nitric oxide synthase (eNOS)/sGC signalling pathway was analysed. Neither the phosphatidylinositol 3‐kinase inhibitor, wortmannin, nor the selective eNOS inhibitor, l ‐N5‐(1‐iminoethyl)‐l ‐ornithine dihydrochloride, reversed the protection afforded by sildenafil, suggesting that Akt/eNOS/sGC cascade does not participate in the protective mechanisms. Our data also show that the protective effect of sildenafil can be extended to vardenafil, another PDE5 inhibitor. In conclusion, sildenafil protects against MDMA‐induced long‐term reduction of indoles by a mechanism involving increased production of cGMP and subsequent activation of PKG and mitochondrial ATP‐sensitive K+ channel opening.  相似文献   

18.
Our previous studies have indicated that hypoxia-induced mitogenic factor (HIMF) has angiogenic properties in an in vivo matrigel plug model and HIMF upregulates expression of vascular endothelial growth factor (VEGF) in mouse lungs and cultured lung epithelial cells. However, whether HIMF exerts angiogenic effects through modulating endothelial cell function remains unknown. In this study, mouse aortic rings cultured with recombinant HIMF protein resulted in enhanced vascular sprouting and increased endothelial cell spreading as confirmed by Dil-Ac-LDL uptake, von Willebrand factor and CD31 staining. In cultured mouse endothelial cell line SVEC 4-10, HIMF dose-dependently enhanced cell proliferation, in vitro migration and tubulogenesis, which was not attenuated by SU1498, a VEGFR2/Flk-1 receptor tyrosine kinase inhibitor. Moreover, HIMF stimulation resulted in phosphorylation of Akt, p38 and ERK1/2 kinases in SVEC 4-10 cells. Treatment of mouse aortic rings and SVEC 4-10 cells with LY294002, but not SB203580, PD098059 or U0126, abolished HIMF-induced vascular sprouting and angiogenic responses. In addition, transfection of a dominant-negative mutant of phosphatidylinositol 3-kinase (PI-3K), Deltap85, blocked HIMF-induced phosphorylation of Akt, endothelial activation and tubulogenesis. These results indicate that HIMF enhances angiogenesis by promoting proliferation and migration of endothelial cells via activation of the PI-3K/Akt pathways.  相似文献   

19.
20.
Epidermal growth factor (EGF) family ligands have been implicated in cardiovascular diseases because of their enhanced expression in vascular lesions and their promoting effects on growth and migration of vascular smooth muscle cells (VSMCs). Betacellulin (BTC), a novel EGF family ligand, has been shown to be expressed in atherosclerotic lesions and to be a potent growth factor of VSMCs. However, the molecular mechanisms downstream of BTC involved in mediating vascular remodeling remain largely unknown. Therefore, the aim of this study was to examine the effects of BTC on signal transduction, growth, and migration in VSMCs. We found that BTC stimulated phosphorylation of EGF receptor (EGFR) at Tyr1068, which was completely blocked by an EGFR kinase inhibitor, AG-1478. BTC also phosphorylated ErbB2 at Tyr877, Tyr1112, and Tyr1248 and induced association of ErbB2 with EGFR, suggesting their heterodimerization in VSMCs. In postreceptor signal transduction, BTC stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, Akt, and p38 mitogen-activated protein kinase (MAPK). Moreover, BTC stimulated proliferation and migration of VSMCs. ERK and Akt inhibitors suppressed migration markedly and proliferation partially, whereas the p38 inhibitor suppressed migration partially but not proliferation. In addition, we found the presence of endogenous BTC in conditioned medium of VSMCs and an increase of BTC on angiotensin II stimulation. In summary, BTC promotes growth and migration of VSMCs through activation of EGFR, ErbB2, and downstream serine/threonine kinases. Together with the expression and processing of endogenous BTC in VSMCs, our results suggest a critical involvement of BTC in vascular remodeling. epidermal growth factor receptors; ErbB2; migration; signal transduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号