首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of astrocyte proliferation has been suggested to be an important event in the developmental neurotoxicity associated with ethanol. We have previously shown that the acetylcholine analog carbachol induces astroglial cell proliferation through activation of muscarinic M3 receptors, and that ethanol strongly inhibits this effect by inhibiting activation of protein kinase C (PKC) zeta and its down-stream effector 70-kDa ribosomal S6 kinase (p70S6K). In this study, we investigated whether inhibition by ethanol of this signal transduction pathway in 1321N1 human astrocytoma cells may be due, at least in part, to inhibition of the formation of the PKC zeta activator phosphatidic acid (PA), which is formed by hydrolysis of phosphatidylcholine by phospholipase D (PLD). 1-Butanol, which is a substrate for PLD and inhibits PA formation, inhibited carbachol-induced cell proliferation and the underlying intracellular signaling, whereas its analog tert-butanol, which is a poor substrate for PLD, was much less effective. In addition, exogenous PAs were able to increase DNA synthesis and to activate PKC zeta and p70S6K. Furthermore, in carbachol-stimulated cells, ethanol increased the formation of phosphatidylethanol and inhibited the formation of PA. Taken together, these results indicate that PLD activation plays an important role in carbachol-induced astroglial cell proliferation by generating the second messenger PA, which activates PKC zeta. Moreover, the effect of ethanol on carbachol-induced proliferation appears to be mediated, at least in part, by its ability to interact with PLD leading to a decreased synthesis of PA.  相似文献   

2.
Stimulation of human colonic epithelial T84 cells with the muscarinic receptor agonist carbachol, a stable analog of acetylcholine, induced Akt, p70S6K1 and ERK activation. Treatment of T84 cells with the selective inhibitor of EGF receptor (EGFR) tyrosine kinase AG1478 abrogated Akt phosphorylation on Ser473 induced by either carbachol or EGF, indicating that carbachol-induced Akt activation is mediated through EGFR transactivation. Surprisingly, AG1478 did not suppress p70S6K1 phosphorylation on Thr389 in response to carbachol, indicating the G protein-coupled receptor (GPCR) stimulation induces p70S6K1 activation, at least in part, via an Akt-independent pathway. In contrast, treatment with the selective MEK inhibitor U0126 (but not with the inactive analog U0124) inhibited carbachol-induced p70S6K1 activation, indicating that the MEK/ERK/RSK pathway plays a critical role in p70S6K1 activation in GPCR-stimulated T84 cells. These findings imply that GPCR activation induces p70S6K1 via ERK rather than through the canonical PI 3-kinase/Akt/TSC/mTORC1 pathway in T84 colon carcinoma cells.  相似文献   

3.
It has been shown that IGF-1-induced pancreatic beta-cell proliferation is glucose-dependent; however, the mechanisms responsible for this glucose dependence are not known. Adenoviral mediated expression of constitutively active phosphatidylinositol 3-kinase (PI3K) in the pancreatic beta-cells, INS-1, suggested that PI3K was not necessary for glucose-induced beta-cell proliferation but was required for IGF-1-induced mitogenesis. Examination of the signaling components downstream of PI3K, 3-phosphoinositide-dependent kinase 1, protein kinase B (PKB), glycogen synthase kinase-3, and p70-kDa-S6-kinase (p70(S6K)), suggested that a major part of glucose-dependent beta-cell proliferation requires activation of mammalian target of rapamycin/p70(S6K), independent of phosphoinositide-dependent kinase 1/PKB activation. Adenoviral expression of the kinase-dead form of PKB in INS-1 cells decreased IGF-1-induced beta-cell proliferation. However, a surprisingly similar decrease was also observed in adenoviral wild type and constitutively active PKB-infected cells. Upon analysis of extracellular signal-regulated protein kinase 1 and 2 (ERK1/ERK2), an increase in ERK1/ERK2 phosphorylation activation by glucose and IGF-1 was observed in kinase-dead PKB-infected cells, but this phosphorylation activation was inhibited in the constitutively active PKB-infected cells. Hence, there is a requirement for the activation of both ERK1/ERK2 and mammalian target of rapamycin/p70(S6K) signal transduction pathways for a full commitment to glucose-induced pancreatic beta-cell mitogenesis. However, for IGF-1-induced activation, these pathways must be carefully balanced, because chronic activation of one (PI3K/PKB) can lead to dampening of the other (ERK1/2), reducing the mitogenic response.  相似文献   

4.
Although the significance of vascular endothelial growth factor (VEGF) and its receptors in angiogenesis is well established, the signal transduction cascades activated by VEGF and their involvement in mediating the mitogenic response of endothelial cells to VEGF are incompletely characterized. Here we demonstrate that VEGF activates mitogen-activated protein (MAP) kinases, including the extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase, phosphatidylinositol 3-kinase (PI 3-kinase), and p70 S6 kinase in human umbilical vein endothelial cells (HUVEC). The activation of these enzymes was assayed by kinase phosphorylation and by kinase activity towards substrates. Studies with PI 3-kinase inhibitors revealed that activation of p70 S6 kinase was mediated by PI 3-kinase. Selective inhibition of ERK, PI 3-kinase, and p70 S6 kinase with the inhibitors PD098059, LY294002, and rapamycin, respectively, inhibited VEGF-stimulated HUVEC proliferation. In marked contrast, the p38 MAP kinase inhibitor SB203580 not only failed to inhibit but actually enhanced HUVEC proliferation; this effect was associated with the phosphorylation of Rb protein. Rb phosphorylation resulted from a decrease in the level of the cdk inhibitor p27KiP1. These results indicate that the activities of ERK, PI 3-kinase, and p70 S6 kinase are essential for VEGF-induced HUVEC proliferation. p38 MAP kinase suppresses endothelial cell proliferation by regulating cell-cycle progression.  相似文献   

5.
Extracellular nucleotides are increasingly recognized as important regulators of growth in a variety of cell types. Recent studies have demonstrated that extracellular ATP is a potent inducer of fibroblast growth acting, at least in part, through an ERK1/2-dependent signaling pathway. However, the contributions of additional signaling pathways to extracellular ATP-mediated cell proliferation have not been defined. By using both pharmacologic and genetic approaches, we found that in addition to ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, mammalian target of rapamycin (mTOR), and p70 S6K-dependent signaling pathways are required for ATP-induced proliferation of adventitial fibroblasts. We found that extracellular ATP acting in part through G(i) proteins increased PI3K activity in a time-dependent manner and transient phosphorylation of Akt. This PI3K pathway is not involved in ATP-induced activation of ERK1/2, implying activation of independent parallel signaling pathways by ATP. Extracellular ATP induced dramatic increases in mTOR and p70 S6K phosphorylation. This activation of the mTOR/p70 S6 kinase (p70 S6K) pathway in response to ATP is because of independent contributions of PI3K/Akt and ERK1/2 pathways, which converge on the level of p70 S6K. ATP-dependent activation of mTOR and p70 S6K also requires additional signaling inputs perhaps from pathways operating through Galpha or Gbetagamma subunits. Collectively, our data demonstrate that ATP-induced adventitial fibroblast proliferation requires activation and interaction of multiple signaling pathways such as PI3K, Akt, mTOR, p70 S6K, and ERK1/2 and provide evidence for purinergic regulation of the protein translational pathways related to cell proliferation.  相似文献   

6.
Stem cell factor (SCF)/c-kit plays an important role in the regulation of hematopoiesis, melanogenesis, and spermatogenesis. In the testis, the SCF/c-kit system is believed to regulate germ cell proliferation, meiosis, and apoptosis. Studies with type A spermatogonia in vivo and in vitro have indicated that SCF induces DNA synthesis and proliferation. However, the signaling pathway for this function of SCF/c-kit has not been elucidated. We now demonstrate that SCF activates phosphoinositide 3-kinase (PI3-K) and p70 S6 kinase (p70S6K) and that rapamycin, a FRAP/mammalian target of rapamycin-dependent inhibitor of p70S6K, completely inhibited bromodeoxyuridine incorporation induced by SCF in primary cultures of spermatogonia. SCF induced cyclin D3 expression and phosphorylation of the retinoblastoma protein through a pathway that is sensitive to both wortmannin and rapamycin. Furthermore, AKT, but not protein kinase C-zeta, is used by SCF/c-kit/PI3-K to activate p70S6K. Dominant negative AKT-K179M completely abolished p70S6K phosphorylation induced by the constitutively active PI3-K catalytic subunit p110. Constitutively active v-AKT highly phosphorylated p70S6K, which was totally inhibited by rapamycin. Thus, SCF/c-kit uses a rapamycin-sensitive PI3-K/AKT/p70S6K/cyclin D3 pathway to promote spermatogonial cell proliferation.  相似文献   

7.
Endogenous IGF-I regulates growth of human intestinal smooth muscle cells by jointly activating phosphatidylinositol 3-kinase (PI3K) and ERK1/2. The 70-kDa ribosomal S6 kinase (p70S6 kinase) is a key regulator of cell growth activated by several independently regulated kinases. The present study characterized the role of p70S6 kinase in IGF-I-induced growth of human intestinal smooth muscle cells and identified the mechanisms of p70S6 kinase activation. IGF-I-induced growth elicited via either the PI3K or ERK1/2 pathway required activation of p70S6 kinase. IGF-I elicited concentration-dependent activation of PI3K, 3-phosphoinositide-dependent kinase-1 (PDK-1), and p70S6 kinase that was sequential and followed similar time courses. IGF-I caused time-dependent and concentration-dependent phosphorylation of p70S6 kinase on Thr(421)/Ser(424), Thr(389), and Thr(229) that paralleled p70S6 kinase activation. p70S6 kinase(Thr(421)/Ser(424)) phosphorylation was PI3K dependent and PDK-1 independent, whereas p70S6 kinase(Thr(389)) and p70S6 kinase(Thr(229)) phosphorylation and p70S6 kinase activation were PI3K dependent and PDK-1 dependent. IGF-I elicited sequential Akt(Ser(308)), Akt(Ser(473)), and mammalian target of rapamycin(Ser(2448)) phosphorylation; however, transfection of muscle cells with kinase-inactive Akt1(K179M) showed that these events were not required for IGF-I to activate p70S6 kinase and stimulate proliferation of human intestinal muscle cells.  相似文献   

8.
Previously, we suggested that p70 S6 kinase (p70 S6K) plays an important role in the regulation of neutrophilic differentiation of HL-60 cells; this conclusion was based on our analysis of transferrin receptor (Trf-R) positive (Trf-R(+)) and negative (Trf-R(-)) cells that appeared after treatment with dimethyl sulfoxide (Me(2)SO). In this study, we analyzed the upstream of p70 S6K in relation to the differentiation and proliferation of both cell types. The granulocyte colony-stimulating factor (G-CSF)-induced enhancement of phosphatidylinositol 3-kinase (PI3K) activity in Trf-R(+) cells was markedly higher than that in Trf-R(-) cells. Wortmannin, a specific inhibitor of PI3K, partially inhibited G-CSF-induced p70 S6K activity and G-CSF-dependent proliferation, whereas rapamycin, an inhibitor of p70 S6K, completely inhibited these activities. The wortmannin-dependent enhancement of neutrophilic differentiation was similar to that induced by rapamycin. From these results, we conclude that the PI3K/p70 S6K cascade may play an important role in negative regulation of neutrophilic differentiation in HL-60 cells. For the G-CSF-dependent proliferation, however, p70 S6K appears to be a highly important pathway through not only a PI3K-dependent but also possibly an independent cascade.  相似文献   

9.
Activation of phosphatidylinositol 3-kinase (PI3K) and activation of the 70/85-kDa S6 protein kinases (alpha II and alpha I isoforms, referred to collectively as pp70S6k) have been independently linked to the regulation of cell proliferation. We demonstrate that these kinases lie on the same signalling pathway and that PI3K mediates the activation of pp70 by the cytokine interleukin-2 (IL-2). We also show that the activation of pp70S6k can be blocked at different points along the signalling pathway by using specific inhibitors of T-cell proliferation. Inhibition of PI3K activity with structurally unrelated but highly specific PI3K inhibitors (wortmannin or LY294002) results in inhibition of IL-2-dependent but not phorbol ester (conventional protein kinase C [cPKC])-dependent pp70S6k activation. The T-cell immunosuppressant rapamycin potently antagonizes IL-2-(PI3K)- and phorbol ester (cPKC)-mediated activation of pp70S6k. Thus, wortmannin and rapamycin antagonize IL-2-mediated activation of pp70S6k at distinct points along the PI3K-regulated signalling pathway, or rapamycin antagonizes another pathway required for pp70S6k activity. Agents that raise the concentration of intracellular cyclic AMP (cAMP) and activate cAMP-dependent protein kinase (PKA) also inhibit IL-2-dependent activation of pp70S6k. In this case, inhibition appears to occur at least two points in this signalling path. Like rapamycin, PKA appears to act downstream of cPKC-mediated pp70S6k activation, and like wortmannin, PKA antagonizes IL-2-dependent activation of PI3K. The results with rapamycin and wortmannin are of added interest since the yeast and mammalian rapamycin targets resemble PI3K in the catalytic domain.  相似文献   

10.
In contrast to cell types in which exposure to hypoxia causes a general reduction of metabolic activity, a remarkable feature of pulmonary artery adventitial fibroblasts is their ability to proliferate in response to hypoxia. Previous studies have suggested that ERK1/2, phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR) are activated by hypoxia and play a role in a variety of cell responses. However, the pathways involved in mediating hypoxia-induced proliferation are largely unknown. Using pharmacological inhibitors, we established that PI3K-Akt, mTOR-p70 ribosomal protein S6 kinase (p70S6K), and EKR1/2 signaling pathways play a critical role in hypoxia-induced adventitial fibroblast proliferation. We found that exposure of serum-starved fibroblasts to 3% O2 resulted in a time-dependent activation of PI3K and transient phosphorylation of Akt. However, activation of PI3K was not required for activation of ERK1/2, implying a parallel involvement of these pathways in the proliferative response of fibroblasts to hypoxia. We found that hypoxia induced significant increases in mTOR, p70S6K, 4E-BP1, and S6 ribosomal protein phosphorylation, as well as dramatic increases in p70S6K activity. The activation of p70S6K/S6 pathway was sensitive to inhibition by rapamycin and LY294002, indicating that mTOR and PI3K/Akt are upstream signaling regulators. However, the magnitude of hypoxia-induced p70S6K activity and phosphorylation suggests involvement of additional signaling pathways. Thus our data demonstrate that hypoxia-induced adventitial fibroblast proliferation requires activation and interaction of PI3K, Akt, mTOR, p70S6K, and ERK1/2 and provide evidence for hypoxic regulation of protein translational pathways in cells exhibiting the capability to proliferate under hypoxic conditions.  相似文献   

11.
Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-alpha/Akt (PKB-alpha) activities, as well as downstream p70 ribosomal S6 kinase (p70S6K) activities and/or phosphorylation of these proteins. ANG IV also significantly increased 5-bromo-2'-deoxy-uridine incorporation into newly synthesized DNA in a concentration- and time-dependent manner. Pretreatment of cells with wortmannin and LY-294002, inhibitors of PI3K, or rapamycin, an inhibitor of the mammalian target of rapamycin kinase and p70S6K, diminished the ANG IV-mediated activation of PDK-1 and PKB-alpha as well as phosphorylation of p70S6K. Although an inhibitor of mitogen-activated protein kinase kinase, PD-98059, but not rapamycin, blocked ANG IV-induced phosphorylation of ERK1/2, both PD-98059 and rapamycin independently caused partial reduction in ANG IV-mediated cell proliferation. However, simultaneous treatment with PD-98059 and rapamycin resulted in total inhibition of ANG IV-induced cell proliferation. These results demonstrate that ANG IV-induced DNA synthesis is regulated in a coordinated fashion involving multiple signaling modules in PAEC.  相似文献   

12.
We have previously shown that interleukin (IL-)10-induced proliferation of the murine mast cell line D36, was dependent upon the activation of PI 3-kinase and p70 S6 kinase. Conversely, we were able to show that this pathway was not involved in the signal transduction pathway mediating IL-10 inhibition of pro-inflammatory cytokine release from monocytes. We have extended these studies to investigate the induction of p75 tumour necrosis factor receptor (TNF-R) shedding, another anti-inflammatory property of IL-10. Using the inhibitors of PI 3-kinase (LY294002 and wortmannin) and an inhibitor of p70 S6 kinase activation (rapamycin), we were able to show that this anti-inflammatory effect of IL-10 was not mediated by the PI 3-kinase/p70 S6 kinase pathway, indicating that another signalling cascade(s) was involved. Further studies also investigated the role of tyrosine kinases in the response to IL-10. Two distinct tyrosine kinase inhibitors, herbimycin and genistein affected the expression of TNF-R in response to IL-10 but, surprisingly, with opposite effects. However, both compounds inhibited the activation of both PI 3-kinase and p70 S6 kinase, with a concomitant inhibition of IL-10-induced proliferation. We observed that whilst tyrosine kinase activity was involved in the regulation of TNF-R expression, IL-10-induced activation of JAK kinases was not sensitive to inhibition by the tyrosine kinase inhibitors. These data suggest that multiple unknown tyrosine kinases are mediating the IL-10-induced signal transduction pathways leading to the regulation of TNF-R expression and IL-10-induced proliferation.  相似文献   

13.
p70 S6 kinase (p70S6K) is an important regulator of cell proliferation. Its activation by growth factor requires phosphorylation by various inputs on multiple sites. Data accumulated thus far support a model whereby p70S6K activation requires sequential phosphorylations at proline-directed residues in the putative autoinhibitory pseudosubstrate domain, as well as threonine 389. Threonine 229, a site in the catalytic loop is phosphorylated by phosphoinositide-dependent kinase 1 (PDK-1). Experimental evidence suggests that p70S6K activation requires a phosphoinositide 3-kinase (PI3-K)-dependent signal(s). However, the intermediates between PI3-K and p70S6K remain unclear. Here, we have identified PI3-K-regulated atypical protein kinase C (PKC) isoform PKCzeta as an upstream regulator of p70S6K. In coexpression experiments, we found that a kinase-inactive PKCzeta mutant antagonized activation of p70S6K by epidermal growth factor, PDK-1, and activated Cdc42 and PI3-K. While overexpression of a constitutively active PKCzeta mutant (myristoylated PKCzeta [myr-PKCzeta]) only modestly activated p70S6K, this mutant cooperated with PDK-1 activation of p70S6K. PDK-1-induced activation of a C-terminal truncation mutant of p70S6K was also enhanced by myr-PKCzeta. Moreover, we have found that p70S6K can associate with both PDK-1 and PKCzeta in vivo in a growth factor-independent manner, while PDK-1 and PKCzeta can also associate with each other, suggesting the existence of a multimeric PI3-K signalling complex. This work provides evidence for a link between a phorbol ester-insensitive PKC isoform and p70S6K. The existence of a PI3-K-dependent signalling complex may enable efficient activation of p70S6K in cells.  相似文献   

14.
Human double minute 2 (HDM2) is an oncoprotein overexpressed in many human cancers. HDM2 expression is regulated at multiple levels in cells. Phosphorylation of HDM2 plays an important role in its post-translational regulation. In this study, we have shown that the phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin, have similar effects on the inhibition of HDM2 phosphorylation and protein turnover. Rapamycin inhibited p70S6K1, but not AKT activation, indicating that rapamycin affects HDM2 phosphorylation via an AKT-independent mechanism. Rapamycin also decreased HDM2 protein stability. Knockdown of p70S6K1 by a p70S6K1 siRNA resulted in the inhibition of HDM2 phosphorylation and a decrease in HDM2 protein turnover. Overexpression of p70S6K1 enhanced HDM2 phosphorylation and led to an increase in HDM2 protein turnover. Our results suggest that p70S6K1 regulates turnover of HDM2 protein for cancer development.  相似文献   

15.
We have studied a possible role of extracellular zinc ion in the activation of p70S6k, which plays an important role in the progression of cells from the G(1) to S phase of the cell cycle. Treatment of Swiss 3T3 cells with zinc sulfate led to the activation and phosphorylation of p70S6k in a dose-dependent manner. The activation of p70S6k by zinc treatment was biphasic, the early phase being at 30 min followed by the late phase at 120 min. The zinc-induced activation of p70S6k was partially inhibited by down-regulation of phorbol 12-myristate 13-acetate-responsive protein kinase C (PKC) by chronic treatment with phorbol 12-myristate 13-acetate, but this was not significant. Moreover, Go6976, a specific calcium-dependent PKC inhibitor, did not significantly inhibit the activation of p70S6k by zinc. These results demonstrate that the zinc-induced activation of p70S6k is not related to PKC. Also, extracellular calcium was not involved in the activation of p70S6k by zinc. Further characterization of the zinc-induced activation of p70S6k using specific inhibitors of the p70S6k signaling pathway, namely rapamycin, wortmannin, and LY294002, showed that zinc acted upstream of mTOR/FRAP/RAFT and phosphatidylinositol 3-kinase (PI3K), because these inhibitors caused the inhibition of zinc-induced p70S6k activity. In addition, Akt, the upstream component of p70S6k, was activated by zinc in a biphasic manner, as was p70S6k. Moreover, dominant interfering alleles of Akt and PDK1 blocked the zinc-induced activation of p70S6k, whereas the lipid kinase activity of PI3K was potently activated by zinc. Taken together, our data suggest that zinc activates p70S6k through the PI3K signaling pathway.  相似文献   

16.
We have demonstrated that T3 increases the expression of ZAKI-4alpha, an endogenous calcineurin inhibitor. In this study we characterized a T3-dependent signaling cascade leading to ZAKI-4alpha expression in human skin fibroblasts. We found that T3-dependent increase in ZAKI-4alpha was greatly attenuated by rapamycin, a specific inhibitor of a protein kinase, mammalian target of rapamycin (mTOR), suggesting the requirement of mTOR activation by T3. Indeed, T3 activated mTOR rapidly through S2448 phosphorylation, leading to the phosphorylation of p70(S6K), a substrate of mTOR. This mTOR activation is mediated through phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) signaling cascade because T3 induced Akt/PKB phosphorylation more rapidly than that of mTOR, and these T3-dependent phosphorylations were blocked by both PI3K inhibitors and by expression of a dominant negative PI3K (Deltap85alpha). Furthermore, the association between thyroid hormone receptor beta1 (TRbeta1) and PI3K-regulatory subunit p85alpha, and the inhibition of T3-induced PI3K activation and mTOR phosphorylation by a dominant negative TR (G345R) demonstrated the involvement of TR in this T3 action. The liganded TR induces the activation of PI3K and Akt/PKB, leading to the nuclear translocation of the latter, which subsequently phosphorylates nuclear mTOR. The rapid activation of PI3K-Akt/PKB-mTOR-p70(S6K) cascade by T3 provides a new molecular mechanism for thyroid hormone action.  相似文献   

17.
In this study, we investigated the effect of tea polyphenols, (-)-epigallocatechin-3-gallate or theaflavins, on UVB-induced phosphatidylinositol 3-kinase (PI3K) activation in mouse epidermal JB6 Cl 41 cells. Pretreatment of cells with these polyphenols inhibited UVB-induced PI3K activation. Furthermore, UVB-induced activation of Akt and ribosomal p70 S6 kinase (p70 S6-K), PI3K downstream effectors, were also attenuated by the polyphenols. In addition to LY294002, a PI3K inhibitor, pretreatment with a specific mitogen-activated protein/extracellular signal-regulated protein kinases (Erks) kinase 1 inhibitor, U0126, or a specific p38 kinase inhibitor, SB202190, blocked UVB-induced activation of both Akt and p70 S6-K. Pretreatment with LY294002 restrained UVB-induced phosphorylation of Erks, suggesting that in UVB signaling, the Erk pathway is mediated by PI3K. Moreover, pretreatment with rapamycin, an inhibitor of p70 S6-K, inhibited UVB-induced activation of p70 S6-K, but UVB-induced activation of Akt did not change. Interestingly, UVB-induced p70 S6-K activation was directly blocked by the addition of (-)-epigallocatechin-3-gallate or theaflavins, whereas these polyphenols showed only a weak inhibition on UVB-induced Akt activation. Because PI3K is an important factor in carcinogenesis, the inhibitory effect of these polyphenols on activation of PI3K and its downstream effects may further explain the anti-tumor promotion action of these tea constituents.  相似文献   

18.
Ovarian cancer is one of the most common cancers among women. Recent studies demonstrated that the gene encoding the p110alpha catalytic subunit of phosphatidylinositol 3-kinase (PI3K) is frequently amplified in ovarian cancer cells. PI3K is involved in multiple cellular functions, including proliferation, differentiation, antiapoptosis, tumorigenesis, and angiogenesis. In this study, we demonstrate that the inhibition of PI3K activity by LY-294002 inhibited ovarian cancer cell proliferation and induced G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins, including cyclin D1, cyclin-dependent kinase (CDK) 4, CDC25A, and retinoblastoma phosphorylation at Ser(780), Ser(795), and Ser(807/811). Expression of CDK6 and beta-actin was not affected by LY-294002. Expression of the cyclin kinase inhibitor p16(INK4a) was induced by the PI3K inhibitor, whereas steady-state levels of p21(CIP1/WAF1) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation of AKT and p70S6K1, but not extracellular regulated kinase 1/2. The G(1) cell cycle arrest induced by LY-294002 was restored by the expression of active forms of AKT and p70S6K1 in the cells. Our study shows that PI3K transmits a mitogenic signal through AKT and mammalian target of rapamycin (mTOR) to p70S6K1. The mTOR inhibitor rapamycin had similar inhibitory effects on G(1) cell cycle progression and on the expression of cyclin D1, CDK4, CDC25A, and retinoblastoma phosphorylation. These results indicate that PI3K mediates G(1) progression and cyclin expression through activation of an AKT/mTOR/p70S6K1 signaling pathway in the ovarian cancer cells.  相似文献   

19.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号