首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Sulfate transporters present at the root surface facilitate uptake of sulfate from the environment. Here we report that uptake of sulfate at the outermost cell layers of Arabidopsis root is associated with the functions of highly and low-inducible sulfate transporters, Sultr1;1 and Sultr1;2, respectively. We have previously reported that Sultr1;1 is a high-affinity sulfate transporter expressed in root hairs, epidermal and cortical cells of Arabidopsis roots, and its expression is strongly upregulated in plants deprived of external sulfate. A novel sulfate transporter gene, Sultr1;2, identified on the BAC clone F28K19 of Arabidopsis, encoded a polypeptide of 653 amino acids that is 72.6% identical to Sultr1;1 and was able to restore sulfate uptake capacity of a yeast mutant lacking sulfate transporter genes (K(m) for sulfate = 6.9 +/- 1.0 microm). Transgenic Arabidopsis plants expressing the fusion gene construct of the Sultr1;2 promoter and green fluorescent protein (GFP) showed specific localization of GFP in the root hairs, epidermal and cortical cells of roots, and in the guard cells of leaves, suggesting that Sultr1;2 may co-localize with Sultr1;1 in the same cell layers at the root surface. Sultr1;1 mRNA was abundantly expressed under low-sulfur conditions (50-100 microm sulfate), whereas Sultr1;2 mRNA accumulated constitutively at high levels under a wide range of sulfur conditions (50-1500 microm sulfate), indicating that Sultr1;2 is less responsive to changes in sulfur conditions. Addition of selenate to the medium increased the level of Sultr1;1 mRNA in parallel with a decrease in the internal sulfate pool in roots. The level of Sultr1;2 mRNA was not influenced under these conditions. Antisense plants of Sultr1;1 showed reduced accumulation of sulfate in roots, particularly in plants treated with selenate, suggesting that the inducible transporter Sultr1;1 contributes to the uptake of sulfate under stressed conditions.  相似文献   

2.
Screening an Arabidopsis (Arabidopsis thaliana) T-DNA mutant library for selenate resistance enabled us to isolate a selenate-resistant mutant line (sel1-11). Molecular and genetic characterization showed that the mutant contained a lesion in the SULTR1;2 gene that encodes a high affinity root sulfate transporter. We showed that SULTR1;2 is the only gene among 13 mutated genes of the Arabidopsis sulfate transporter family whose mutation conferred selenate resistance to Arabidopsis. The selenate resistance phenotype of the sel1-11 mutant was mirrored by an 8-fold increase of root growth in the presence of selenate as shown by the calculated lethal concentration values. The impairment of SULTR1;2 activity in sel1-11 resulted in a reduced (35)S-sulfate uptake capacity by both roots and calli and a reduced sulfate and selenate content in root, shoot, and calli. Comparing sulfate-to-selenate ratios instead of absolute sulfate and selenate contents in roots and shoots enabled us to gain better insight into the mechanism of selenate toxicity in Arabidopsis. Roots of the sel1-11 mutant line showed a higher sulfate to selenate ratio than that of wild-type roots, while there were no significant differences in sulfate to selenate ratios in shoots of wild-type and mutant lines. These results indicated that the mechanism that confers the selenate resistance phenotype to the sel1-11 line takes place rather in the roots. It might be in part the result of a lower selenate uptake and of a protective effect of sulfate against the toxic effects of selenate on root growth. These results revealed in plants a central and specific role of the transporter SULTR1;2 in selenate sensitivity; they further suggested that root growth and potentially the root tip activity might be a specific target of selenate toxicity in Arabidopsis.  相似文献   

3.
To investigate the uptake and long-distance translocation of sulphate in plants, we have characterized three cell-type-specific sulphate transporters, Sultr1;1, Sultr2;1 and Sultr2;2 in Arabidopsis thaliana. Heterologous expression in the yeast sulphate transporter mutant indicated that Sultr1;1 encodes a high-affinity sulphate transporter (Km for sulphate 3.6 +/- 0.6 microM), whereas Sultr2;1 and Sultr2;2 encode low-affinity sulphate transporters (Km for sulphate 0.41 +/- 0.07 mM and >/= 1.2 mM, respectively). In Arabidopsis plants expressing the fusion gene construct of the Sultr1;1 promoter and green fluorescent protein (GFP), GFP was localized in the lateral root cap, root hairs, epidermis and cortex of roots. beta-glucuronidase (GUS) expressed with the Sultr2;1 promoter was specifically accumulated in the xylem parenchyma cells of roots and leaves, and in the root pericycles and leaf phloem. Expression of the Sultr2;2 promoter-GFP fusion gene showed specific localization of GFP in the root phloem and leaf vascular bundle sheath cells. Plants continuously grown with low sulphate concentrations accumulated high levels of Sultr1;1 and Sultr2;1 mRNA in roots and Sultr2;2 mRNA in leaves. The abundance of Sultr1;1 and Sultr2;1 mRNA was increased remarkably in roots by short-term stress caused by withdrawal of sulphate. Addition of selenate in the sulphate-sufficient medium increased the sulphate uptake capacity, tissue sulphate content and the abundance of Sultr1;1 and Sultr2;1 mRNA in roots. Concomitant decrease of the tissue thiol content after selenate treatment was consistent with the suggested role of glutathione (GSH) as a repressive effector for the expression of sulphate transporter genes.  相似文献   

4.
For the effective recycling of nutrients, vascular plants transport pooled inorganic ions and metabolites through the sieve tube. A novel sulfate transporter gene, Sultr1;3, was identified as an essential member contributing to this process for redistribution of sulfur source in Arabidopsis. Sultr1;3 belonged to the family of high-affinity sulfate transporters, and was able to complement the yeast sulfate transporter mutant. The fusion protein of Sultr1;3 and green fluorescent protein was expressed by the Sultr1;3 promoter in transgenic plants, which revealed phloem-specific expression of Sultr1;3 in Arabidopsis. Sultr1;3-green fluorescent protein was found in the sieve element-companion cell complexes of the phloem in cotyledons and roots. Limitation of external sulfate caused accumulation of Sultr1;3 mRNA both in leaves and roots. Movement of (35)S-labeled sulfate from cotyledons to the sink organs was restricted in the T-DNA insertion mutant of Sultr1;3. These results provide evidence that Sultr1;3 transporter plays an important role in loading of sulfate to the sieve tube, initiating the source-to-sink translocation of sulfur nutrient in Arabidopsis.  相似文献   

5.
Sulfate transporters in plants and animals are structurally conserved and have an amino-terminal domain that functions in transport and a carboxyl-terminal region that has been designated the STAS domain. The STAS domain in sulfate transporters has significant similarity to bacterial anti-sigma factor antagonists. To determine if the STAS domain has a role in controlling the activity of sulfate transporters, their stability, or their localization to the plasma membrane, we examined the effect of deleting or modifying the STAS domain of dominant sulfate transporters in roots of Arabidopsis thaliana. The A. thaliana Sultr1;2 and Sultr1;1 sulfate transporters rescue the methionine-dependent growth phenotype of the yeast sulfate transporter mutant strain CP154-7B. Constructs of Sultr1;2 in which the STAS domain was deleted (DeltaSTAS) resulted in synthesis of a truncated polypeptide that was unable to rescue the CP154-7B phenotype. The inability of these constructs to rescue the mutant phenotype probably reflected both low level cellular accumulation of the transporter and the inability of the truncated protein to localize to the plasma membrane. Fusing the STAS domain from other sulfate transporters to Sultr1;2 DeltaSTAS constructs restored elevated accumulation and plasma membrane localization, although the kinetics of sulfate uptake in the transformants were markedly altered with respect to transformants synthesizing wild-type Sultr1;2 protein. These results suggest that the STAS domain is essential, either directly or indirectly, for facilitating localization of the transporters to the plasma membrane, but it also appears to influence the kinetic properties of the catalytic domain of transporters.  相似文献   

6.
Two genes were isolated from a rice genomic library and the coding region of their corresponding cDNAs generated by RT-PCR. These single copy genes, designated ORYsa;Sultr1;1 and ORYsa;Sultr4;1, encode putative sulfate transporters. Both genes encode proteins with predicted topologies and signature sequences of the H+/SO42- symporter family of transporters and exhibit a high degree of homology to other plant sulfate transporters. ORYsa;Sultr1;1 is expressed in roots with levels of expression being strongly enhanced by sulfate starvation. In situ hybridization experiments revealed that ORYsa;Sultr1;1 expression is localized to the main absorptive region of roots. This gene probably encodes a transporter that is responsible for uptake of sulfate from the soil solution. In contrast, ORYsa;Sultr4;1 was expressed in both roots and shoots and was unresponsive to the sulfur status of the plant. The sequence of ORYsa;Sultr4;1 contains a possible plastid-targeting transit peptide which may indicate a role in transport of sulfate to sites of sulfate reduction in plastids. The role of the transporter encoded by ORYsa;Sultr4;1 is likely to be significantly different fromORYsa;Sultr1;1. These are the first reports of isolation of genes encoding sulfate transporters from rice and provide a basis for further studies involving sulfate transport.  相似文献   

7.
In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher in shoots and roots of transgenic seedlings, and 1.5- to 2-fold higher in shoots but not roots of selenate-supplied mature ATP-sulfurylase-overexpressing (APS) plants. The APS plants showed increased selenate reduction: x-ray absorption spectroscopy showed that root and shoot tissues of mature APS plants contained mostly organic Se (possibly selenomethionine), whereas wild-type plants accumulated selenate. The APS plants were not able to reduce selenate when shoots were removed immediately before selenate was supplied. In addition, Se accumulation in APS plants was 2- to 3-fold higher in shoots and 1.5-fold higher in roots compared with wild-type plants, and Se tolerance was higher in both seedlings and mature APS plants. These studies show that ATP sulfurylase not only mediates selenate reduction in plants, but is also rate limiting for selenate uptake and assimilation.  相似文献   

8.
9.
Xylem transport of sulfate regulates distribution of sulfur in vascular plants. Here, we describe SULTR3;5 as an essential component of the sulfate transport system that facilitates the root-to-shoot transport of sulfate in the vasculature. In Arabidopsis (Arabidopsis thaliana), SULTR3;5 was colocalized with the SULTR2;1 low-affinity sulfate transporter in xylem parenchyma and pericycle cells in roots. In a yeast (Saccharomyces cerevisiae) expression system, sulfate uptake was hardly detectable with SULTR3;5 expression alone; however, cells coexpressing both SULTR3;5 and SULTR2;1 showed substantial uptake activity that was considerably higher than with SULTR2;1 expression alone. The V(max) value of sulfate uptake activity with SULTR3;5-SULTR2;1 coexpression was approximately 3 times higher than with SULTR2;1 alone. In Arabidopsis, the root-to-shoot transport of sulfate was restricted in the sultr3;5 mutants, under conditions of high SULTR2;1 expression in the roots after sulfur limitation. These results suggested that SULTR3;5 is constitutively expressed in the root vasculature, but its function to reinforce the capacity of the SULTR2;1 low-affinity transporter is only essential when SULTR2;1 mRNA is induced by sulfur limitation. Consequently, coexpression of SULTR3;5 and SULTR2;1 provides maximum capacity of sulfate transport activity, which facilitates retrieval of apoplastic sulfate to the xylem parenchyma cells in the vasculature of Arabidopsis roots and may contribute to the root-to-shoot transport of sulfate.  相似文献   

10.
Heavy metal stress and sulfate uptake in maize roots   总被引:1,自引:0,他引:1       下载免费PDF全文
ZmST1;1, a putative high-affinity sulfate transporter gene expressed in maize (Zea mays) roots, was functionally characterized and its expression patterns were analyzed in roots of plants exposed to different heavy metals (Cd, Zn, and Cu) interfering with thiol metabolism. The ZmST1;1 cDNA was expressed in the yeast (Saccharomyces cerevisiae) sulfate transporter mutant CP154-7A. Kinetic analysis of sulfate uptake isotherm, determined on complemented yeast cells, revealed that ZmST1;1 has a high affinity for sulfate (Km value of 14.6 +/- 0.4 microm). Cd, Zn, and Cu exposure increased both ZmST1;1 expression and root sulfate uptake capacity. The metal-induced sulfate uptakes were accompanied by deep alterations in both thiol metabolism and levels of compounds such as reduced glutathione (GSH), probably involved as signals in sulfate uptake modulation. Cd and Zn exposure strongly increased the level of nonprotein thiols of the roots, indicating the induction of additional sinks for reduced sulfur, but differently affected root GSH contents that decreased or increased following Cd or Zn stress, respectively. Moreover, during Cd stress a clear relation between the ZmST1;1 mRNA abundance increment and the entity of the GSH decrement was impossible to evince. Conversely, Cu stress did not affect nonprotein thiol levels, but resulted in a deep contraction of GSH pools. Our data suggest that during heavy metal stress sulfate uptake by roots may be controlled by both GSH-dependent or -independent signaling pathways. Finally, some evidence suggesting that root sulfate availability in Cd-stressed plants may limit GSH biosynthesis and thus Cd tolerance are discussed.  相似文献   

11.
Symbiotic nitrogen fixation (SNF) by intracellular rhizobia within legume root nodules requires the exchange of nutrients between host plant cells and their resident bacteria. Little is known at the molecular level about plant transporters that mediate such exchanges. Several mutants of the model legume Lotus japonicus have been identified that develop nodules with metabolic defects that cannot fix nitrogen efficiently and exhibit retarded growth under symbiotic conditions. Map-based cloning of defective genes in two such mutants, sst1-1 and sst1-2 (for symbiotic sulfate transporter), revealed two alleles of the same gene. The gene is expressed in a nodule-specific manner and encodes a protein homologous with eukaryotic sulfate transporters. Full-length cDNA of the gene complemented a yeast mutant defective in sulfate transport. Hence, the gene was named Sst1. The sst1-1 and sst1-2 mutants exhibited normal growth and development under nonsymbiotic growth conditions, a result consistent with the nodule-specific expression of Sst1. Data from a previous proteomic study indicate that SST1 is located on the symbiosome membrane in Lotus nodules. Together, these results suggest that SST1 transports sulfate from the plant cell cytoplasm to the intracellular rhizobia, where the nutrient is essential for protein and cofactor synthesis, including nitrogenase biosynthesis. This work shows the importance of plant sulfate transport in SNF and the specialization of a eukaryotic transporter gene for this purpose.  相似文献   

12.
Sulfate transporters in plants represent a family of proteins containing transmembrane domains that constitute the catalytic part of the protein and a short linking region that joins this catalytic moiety with a C-terminal STAS domain. The STAS domain resembles an anti-sigma factor antagonist of Bacillus subtilis, which is one distinguishing feature of the SLC26 transporter family; this family includes transporters for sulfate and other anions such as iodide and carbonate. Recent work has demonstrated that this domain is critical for the activity of Arabidopsis thaliana sulfate transporters, and specific lesions in this domain, or the exchange of STAS domains between different sulfate transporters, can severely impair transport activity. In this work we generated a Saccharomyces cerevisiae expression library of the A. thaliana Sultr1;2 gene with random mutations in the linking region-STAS domain and identified STAS domain lesions that altered Sultr1;2 biogenesis and/or function. A number of mutations in the beta-sheet that forms the core of the STAS domain prevented intracellular accumulation of Sultr1;2. In contrast, the linking region and one surface of the STAS domain containing N termini of the first and second alpha-helices have a number of amino acids critical for the function of the protein; mutations in these regions still allow protein accumulation in the plasma membrane, but the protein is no longer capable of efficiently transporting sulfate into cells. These results suggest that the STAS domain is critical for both the activity and biosynthesis/stability of the transporter, and that STAS sub-domains correlate with these specific functions.  相似文献   

13.
14.
Genetics of sulfate transport by Salmonella typhimurium   总被引:16,自引:13,他引:3       下载免费PDF全文
Sixty-four mutants were isolated from the LT-2 wild-type strain of Salmonella typhimurium by selecting for chromate resistance. The majority of lesions were shown to lie in the cysA gene. (i) The mutants cannot take up sulfate, a finding which verifies the role of cysA in sulfate transport. In addition, 52 sulfate-transport mutants isolated without chromate selection were defective in the cysA gene. (ii) Most had less than 25% of the binding activity of the wild-type strain. (iii) Most had normal sulfite reductase (H(2)S-nicotinamide adenine dinucleotide phosphate oxidoreductase, EC 1.8.1.2) activity. (iv) Their sulfate-binding protein (binder) appears electrophoretically and immunologically normal. (v) Amber cysA mutants also make apparently normal binder in small amounts. (vi) All classical cysA mutants tested, including two with long deletions, had normal binding activity. From these observations, it is suggested that the cysA gene does not code for the binder. But many mutations in this gene reduce the binding activity in some unknown way. Other mutants, identified as cysB mutants, had neither binding nor uptake activities and their sulfite reductase activities were similarly reduced, thus confirming the regulatory role of the cysB gene. When binder was detectable, it had wild-type properties. No mutations in the binder gene were found among more than 100 mutants examined. Thus, sulfate binding has not been established as a part of sulfate transport. However, the production of binder is intimately connected with cysA, the established sulfate transport gene, and is regulated by the same mechanism that regulates both transport and the rest of the cysteine biosynthetic pathway.  相似文献   

15.
Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1‐15 and sel1‐16, which show increased expression of a sulfur deficiency‐activated gene βglucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high‐affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1‐15 and sel1‐16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild‐type, but showed higher expression of BGLU28 and other sulfur deficiency‐activated genes than wild‐type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1‐15 and sel1‐16. Taken together, the genetic evidence suggests that, in addition to its known function as a high‐affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.  相似文献   

16.
The arl2 mutants of Arabidopsis display altered root and hypocotyl gravitropism, whereas their inflorescence stems are fully gravitropic. Interestingly, mutant roots respond like the wild type to phytohormones and an inhibitor of polar auxin transport. Also, their cap columella cells accumulate starch similarly to wild-type cells, and mutant hypocotyls display strong phototropic responses to lateral light stimulation. The ARL2 gene encodes a DnaJ-like protein similar to ARG1, another protein previously implicated in gravity signal transduction in Arabidopsis seedlings. ARL2 is expressed at low levels in all organs of seedlings and plants. arl2-1 arg1-2 double mutant roots display kinetics of gravitropism similar to those of single mutants. However, double mutants carrying both arl2-1 and pgm-1 (a mutation in the starch-biosynthetic gene PHOSPHOGLUCOMUTASE) at the homozygous state display a more pronounced root gravitropic defect than the single mutants. On the other hand, seedlings with a null mutation in ARL1, a paralog of ARG1 and ARL2, behave similarly to the wild type in gravitropism and other related assays. Taken together, the results suggest that ARG1 and ARL2 function in the same gravity signal transduction pathway in the hypocotyl and root of Arabidopsis seedlings, distinct from the pathway involving PGM.  相似文献   

17.
Exogenously applied brassinolide (BL) increased both gravitropic curvature and length of primary roots of Arabidopsis at low concentration (10(-10) M), whereas at higher concentration, BL further increased gravitropic curvature while it inhibited primary root growth. BRI1-GFP plants possessing a high steady-state expression level of a brassinosteroid (BR) receptor kinase rendered the plant's responses to gravity and root growth more sensitive, while BR-insensitive mutants, bri1-301 and bak1, delayed root growth and reduced their response to the gravitropic stimulus. The stimulatory effect of BL on the root gravitropic curvature was also enhanced in auxin transport mutants, aux1-7 and pin2, relative to wild-type plants, and increasing concentration of auxin attenuated BL-induced root sensitivity to gravity. Interestingly, IAA treatment to the roots of bri1-301 and bak1 plants or of plants pretreated with a BL biosynthetic inhibitor, brassinazole, increased their sensitivity to gravity, while these treatments for the BL-hypersensitive transgenic plants, BRI1-GFP and 35S-BAK1, were less effective. Expression of a CYP79B2 gene, encoding an IAA biosynthetic enzyme, was suppressed in BL-hypersensitive plant types and enhanced in BL-insensitive or -deficient plants. In conclusion, our results indicate that BL interacts negatively with IAA in the regulation of plant gravitropic response and root growth, and its regulation is achieved partly by modulating biosynthetic pathways of the counterpart hormone.  相似文献   

18.
19.
The effects of low root temperature on growth and root cell water transport were compared between wild-type Arabidopsis (Arabidopsis thaliana) and plants overexpressing plasma membrane intrinsic protein 1;4 (PIP1;4) and PIP2;5. Descending root temperature from 25°C to 10°C quickly reduced cell hydraulic conductivity (L(p)) in wild-type plants but did not affect L(p) in plants overexpressing PIP1;4 and PIP2;5. Similarly, when the roots of wild-type plants were exposed to 10°C for 1 d, L(p) was lower compared with 25°C. However, there was no effect of low root temperature on L(p) in PIP1;4- and PIP2;5-overexpressing plants after 1 d of treatment. When the roots were exposed to 10°C for 5 d, L(p) was reduced in wild-type plants and in plants overexpressing PIP1;4, whereas there was still no effect in PIP2;5-overexpressing plants. These results suggest that the gating mechanism in PIP1;4 may be more sensitive to prolonged low temperature compared with PIP2;5. The reduction of L(p) at 10°C in roots of wild-type plants was partly restored to the preexposure level by 5 mm Ca(NO(3))(2) and protein phosphatase inhibitors (75 nm okadaic acid or 1 μm Na(3)VO(4)), suggesting that aquaporin phosphorylation/dephosphorylation processes were involved in this response. The temperature sensitivity of cell water transport in roots was reflected by a reduction in shoot and root growth rates in the wild-type and PIP1;4-overexpressing plants exposed to 10°C root temperature for 5 d. However, low root temperature had no effect on growth in plants overexpressing PIP2;5. These results provide strong evidence for a link between growth at low root temperature and aquaporin-mediated root water transport in Arabidopsis.  相似文献   

20.
* In Arabidopsis, SULTR1;1 and SULTR1;2 are two genes proposed to be involved in high-affinity sulphate uptake from the soil solution. We address here the specific issue of their functional redundancy for the uptake of sulphate and for the accumulation of its toxic analogue selenate with regard to plant growth and selenate tolerance. * Using the complete set of genotypes, including the wild-type, each one of the single sultr1;1 and sultr1;2 mutants and the resulting double sultr1;1-sultr1;2 mutant, we performed a detailed phenotypic analysis of root length, shoot biomass, sulphate uptake, sulphate and selenate accumulation and selenate tolerance. * The results all ordered the four different genotypes according to the same functional hierarchy. Wild-type and sultr1;1 mutant plants displayed similar phenotypes. By contrast, sultr1;1-sultr1;2 double-mutant plants showed the most extreme phenotype and the sultr1;2 mutant displayed intermediate performances. Additionally, the degree of selenate tolerance was directly related to the seedling selenate content according to a single sigmoid regression curve common to all the genotypes. * The SULTR1;1 and SULTR1;2 genes display unequal functional redundancy, which leaves open for SULTR1;1 the possibility of displaying an additional function besides its role in sulphate membrane transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号