首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Escherichia coli gene purF, coding for 5-phosphoribosylamine:glutamine pyrophosphate phosphoribosyltransferase (amidophosphoribosyltransferase) was subcloned from a ColE1-purF plasmid into pBR322. Amidophosphoribosyltransferase levels were elevated more than 5-fold in the ColE1-purF plasmid-bearing strain compared to the wild type control, and a further 10- to 13-fold elevation was observed in several pBR322 derivatives. The nucleotide sequence of a 2478-base pair PvuI-HinfI fragment encoding purF was determined. The purF45 structural gene codes for a 56,395 Mr protein chain having 504 amino acid residues. Methionine-1 is removed by processing in vivo leaving cysteine as the NH2-terminal residue. The deduced amino acid sequence was confirmed by comparisons with the NH2-terminal amino acid sequence determined by automated Edman degradation (Tso, J. Y., Hermodson, M. A., and Zalkin, H. (1982) J. Biol. Chem. 257, 3532-3536) and amino acid analyses of CNBr peptides including a 4-residue peptide from the CO2H terminus of the enzyme. Nucleotide sequences characteristic of bacterial promoter-operator regions were identified in the 5' flanking region. The coding region appears to be preceded by a 277-297 nucleotide mRNA leader. A deletion removing the putative promoter-operator region results in defective purF expression.  相似文献   

3.
4.
5.
A rat apolipoprotein A-II cDNA clone was isolated from a rat liver cDNA library by in situ hybridization of bacteriophage plaques using a 32P-labeled human apoA-II cDNA as a probe. The cDNA insert from this clone was characterized by DNA sequencing. The amino acid composition derived from the DNA sequence data matched well with that of rat apoA-II reported earlier (Herbert et al. 1974. J. Biol Chem. 249: 5718-5724), indicating that the cDNA insert coded for rat apoA-II. Further evidence was provided by a comparison of the amino acid sequence of rat apoA-II obtained here with that of human apoA-II (Brewer et al. 1972. Proc. Natl. Acad. Sci. USA. 69: 1304-1308). While the rat apoA-II cDNA insert did not code for the entire presegment, it had the same COOH-terminal residues of the presegment as well as the same prosegment (Ala-Leu-Val-Arg-Arg) as in human preproapoA-II, suggesting that rat apoA-II was also synthesized initially as preproapoA-II. Mature rat apoA-II contains 79 amino acids. Residue 6 of mature rat apoA-II is Asp, while it is Cys in human apoA-II, and this would account for the absence of dimeric forms of rat apoA-II in plasma. While the overall amino acid sequence homology between rat and human apoA-II is about 50%, the amphipathic alpha-helical structures, which are responsible for lipid-binding, seem to be conserved in the two proteins. The size of rat apoA-II mRNA was estimated to be about 600 nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The ilvE gene of the Escherichia coli K-12 ilvGEDA operon, which encodes branched-chain amino acid aminotransferase [EC 2.6.1.42], was cloned. The nucleotide sequence of 1.5 kilobase pairs containing the gene was determined. The coding region of the ilvE gene contained 927 nucleotide residues and could encode 309 amino acid residues. The predicted molecular weight, amino acid composition and the sequence of the N-terminal 15 residues agreed with the enzyme data reported previously (Lee-Peng, F.-C., et al. (1979) J. Bacteriol. 139, 339-345). From the deduced amino acid sequence, the secondary structure was predicted.  相似文献   

8.
9.
10.
Further details are given of crystals of glutamine synthetase prepared from Escherichia coli. Crystals of two kinds have been observed: (1) rhombic dodecahedra which correspond to the morphology of the crystals studied by Eisenberg et al. (1971) (and which were found by them to contain dodecamers), and (2) rhombohedra, reported here. Cell dimensions and packing considerations led to the consideration of two possible structures for the rhombohedral crystals. These we have called the “T = 7 structure” and the “B.C.C. structure”. The T = 7 structure would be related to that derived by Eisenberg and would contain dodecamers, but is inconsistent with our X-ray intensity data. The B.C.C. structure is considered more probable. It is built of cubic octomers or square tetramers. Electron micrographs of our glutamine synthetase preparations show a wide variety of aggregates, including dodecamers and tetramers. The unit cell dimensions of our crystals are a = 140 ± 2 Å, and c = 148 ± 2 Å. The Laue symmetry group is 3̄m P31.  相似文献   

11.
12.
The nucleotide sequence of the glg C gene of Escherichia coli K12, coding for ADP-glucose synthetase, has been determined. The structural gene consists of 1293 base pairs, which specify a protein of 431 amino acids. The amino acid sequence deduced from the DNA sequence is consistent with the known NH2-terminal amino acid sequence and the amino acid composition of ADP-glucose synthetase. The translation start of the structural gene of glycogen synthase, glg A, starts immediately after termination of the glg C gene.  相似文献   

13.
Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.  相似文献   

14.
Amino acid sequence of Escherichia coli citrate synthase   总被引:6,自引:0,他引:6  
V Bhayana  H W Duckworth 《Biochemistry》1984,23(13):2900-2905
Detailed evidence for the amino acid sequence of allosteric citrate synthase from Escherichia coli is presented. The evidence confirms all but 11 of the residues inferred from the sequence of the gene as reported previously [Ner, S. S., Bhayana, V., Bell, A. W., Giles, I. G., Duckworth, H. W., & Bloxham, D. P. (1983) Biochemistry 22, 5243]; no information has been obtained about 10 of these (residues 101-108 and 217-218), and we find aspartic acid rather than asparagine at position 10. Substantial regions of sequence homology are noted between the E. coli enzyme and citrate synthase from pig heart, especially near residues thought to be involved in the active site. Deletions or insertions must be assumed in a number of places in order to maximize homology. Either of two lysines, at positions 355 and 356, could be formally homologous to the trimethyllysine of pig heart enzyme, but neither of these is methylated. It appears that E. coli and pig heart citrate synthases are formed of basically similar subunits but that considerable differences exist, which must explain why the E. coli enzyme is hexameric and allosterically inhibited by NADH, while the pig heart enzyme is dimeric and insensitive to that nucleotide.  相似文献   

15.
Kinetic mechanism of Escherichia coli glutamine synthetase   总被引:8,自引:0,他引:8  
T D Meek  J J Villafranca 《Biochemistry》1980,19(24):5513-5519
  相似文献   

16.
17.
18.
In an earlier paper, we described a procedure for the isolation of glutamine synthetase and the protein product of the groE gene (pgroE) by polyethyleneimine precipitation and affinity chromatography on a Blue Dextran column (Z. F. Burton and D. Eisenberg, 1980, Arch. Biochem. Biophys.205, 478–488). Subsequently we found that several of the steps can be omitted when isolating glutamine synthetase. Two procedures are described which are very rapid and quantitative for the recovery of glutamine synthetase activity and which are useful for handling quantities of cells at least up to 500 g.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号