首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 408 毫秒
1.
Dynamics between stem cells, niche, and progeny in the hair follicle   总被引:1,自引:0,他引:1  
Hsu YC  Pasolli HA  Fuchs E 《Cell》2011,144(1):92-105
Here, we exploit the hair follicle to define the point at which stem cells (SCs) become irreversibly committed along a differentiation lineage. Employing histone and nucleotide double-pulse-chase and lineage tracing, we show that the early SC descendents en route to becoming transit-amplifying cells retain stemness and slow-cycling properties and home back to the bulge niche when hair growth stops. These become the primary SCs for the next hair cycle, whereas initial bulge SCs become reserves for injury. Proliferating descendents further en route irreversibly lose their stemness, although they retain many SC markers and survive, unlike their transit-amplifying progeny. Remarkably, these progeny also home back to the bulge. Combining purification and gene expression analysis with differential ablation and functional experiments, we define critical functions for these non-SC niche residents and unveil the intriguing concept that an irreversibly committed cell in an SC lineage can become an essential contributor to the niche microenvironment.  相似文献   

2.
3.
In adult skin, epithelial hair follicle stem cells (SCs) reside in a quiescent niche and are essential for cyclic bouts of hair growth. Niche architecture becomes pronounced postnatally at the start of the first hair cycle. Whether SCs exist or function earlier is unknown. Here we show that slow-cycling cells appear early in skin development, express SC markers, and later give rise to the adult SC population. To test whether these early slow-cycling cells function as SCs, we use Sox9-Cre for genetic marking and K14-Cre to embryonically ablate Sox9, an essential adult SC gene. We find that the progeny of Sox9-expressing cells contribute to all skin epithelial lineages and Sox9 is required for SC specification. In the absence of early SCs, hair follicle and sebaceous gland morphogenesis is blocked, and epidermal wound repair is compromised. These findings establish the existence of early hair follicle SCs and reveal their physiological importance in tissue morphogenesis.  相似文献   

4.
Disruption of the c-Kit/stem cell factor (SCF) signaling pathway interferes with the survival, migration, and differentiation of melanocytes during generation of the hair follicle pigmentary unit. We examined c-Kit, SCF, and S100 (a marker for precursor melanocytic cells) expression, as well as melanoblast/melanocyte ultrastructure, in perinatal C57BL/6 mouse skin. Before the onset of hair bulb melanogenesis (i.e., stages 0-4 of hair follicle morphogenesis), strong c-Kit immunoreactivity (IR) was seen in selected non-melanogenic cells in the developing hair placode and hair plug. Many of these cells were S100-IR and were ultrastructurally identified as melanoblasts with migratory appearance. During the subsequent stages (5 and 6), increasingly dendritic c-Kit-IR cells successively invaded the hair bulb, while S100-IR gradually disappeared from these cells. Towards the completion of hair follicle morphogenesis (stages 7 and 8), several distinct follicular melanocytic cell populations could be defined and consisted broadly of (a) undifferentiated, non-pigmented c-Kit-negative melanoblasts in the outer root sheath and bulge and (b) highly differentiated melanocytes adjacent to the hair follicle dermal papilla above Auber's line. Widespread epithelial SCF-IR was seen throughout hair follicle morphogenesis. These findings suggest that melanoblasts express c-Kit as a prerequisite for migration into the SCF-supplying hair follicle epithelium. In addition, differentiated c-Kit-IR melanocytes target the bulb, while non-c-Kit-IR melanoblasts invade the outer root sheath and bulge in fully developed hair follicles.  相似文献   

5.
目的探讨常见毛囊细胞角蛋白在毛囊周期中的表达特征。 方法取毛囊发育期、生长期启动、生长期、退化期和静止期的小鼠皮肤,石蜡切片后通过免疫荧光的方法,检测细胞角蛋白Krt5、Krt6、Krt10、Krt14、Krt15和Krt19的表达情况。 结果Krt5在静止期和生长期启动表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt6表达于所有时期的外根鞘细胞和内根鞘细胞;Krt10表达于生长期和退化期的毛母质和内根鞘细胞,在其他时期表达不一致;Krt14在生长期和退化期表达于所有毛囊上皮细胞,在其他时期表达不一致;Krt15和Krt19表达于毛囊发育期、生长期启动和静止期的毛囊隆突区细胞,在生长期和退化期表达不一致。 结论角蛋白作为毛囊结构或毛囊干细胞标记物仅适用于特定的毛囊周期。研究者在使用毛囊角蛋白作为标记物时,应首先明确其在毛囊周期中的表达情况。  相似文献   

6.
The lowermost portion of the resting (telogen) follicle consists of the bulge and secondary hair germ. We previously showed that the progeny of stem cells in the bulge form the lower follicle and hair, but the relationship of the bulge cells with the secondary hair germ cells, which are also involved in the generation of the new hair at the onset of the hair growth cycle (anagen), remains unclear. Here we address whether secondary hair germ cells are derived directly from epithelial stem cells in the adjacent bulge or whether they arise from cells within the lower follicle that survive the degenerative phase of the hair cycle (catagen). We use 5-bromo-2'-deoxyuridine to label bulge cells at anagen onset, and demonstrate that the lowermost portion of the bulge collapses around the hair and forms the secondary hair germ during late catagen. During the first six days of anagen onset bulge cells proliferate and self-renew. Bulge cell proliferation at this time also generates cells that form the future secondary germ. As bulge cells form the secondary germ cells at the end of catagen, they lose expression of a biochemical marker, S100A6. Remarkably, however, following injury of bulge cells by hair depilation, progenitor cells in the secondary hair germ repopulate the bulge and re-express bulge cell markers. These findings support the notion that keratinocytes can "dedifferentiate" to a stem cell state in response to wounding, perhaps related to signals from the stem cell niche. Finally, we also present evidence that quiescent bulge cells undergo apoptosis during follicle remodeling in catagen, indicating that a subpopulation of bulge cells is not permanent.  相似文献   

7.
The principal pool of epidermal stem cells is located in the bulge region of the hair follicle root sheath. In this research project, we have used a refined procedure to isolate porcine hair follicles including their root sheath and for comparison purposes also human cell material. These cells migrating from the hair follicles were then cytochemically characterized. A panel of antibodies and two labeled plant lectins were tested on cell material obtained under a range of assorted experimental conditions. Due to their role in growth regulation we also studied two endogenous lectins, specifically monitoring their expression and the presence of accessible ligands. These in vitro results were compared with findings on porcine and human hair follicles and human basal cell carcinomas in situ. The keratinocytes originating from hair follicles in the presence of feeder cells are rather undifferentiated and express galectin-1/galectin-1-binding sites but not galectin-3 in their nuclei associated with Np63 positivity. Nuclear reactivity for galectin-1 was rarely observed in the bulge of the outer root sheath of the human hair follicle and of basal cell carcinomas and absent in porcine tissue samples. Exclusion of feeder cells from our cultivation system of porcine hair follicles led to the formation of spheroid bodies from these keratinocytes. Ki67 as a marker of proliferation was not present in the nuclei of cells forming these spheroids. One part of these bodies is positive for markers of post-mitotic differentiated cells, while the other spheroids are composed of poorly differentiated cells, which are able to adhere to feeder cells and form growing colonies. In summary, the detection of galectin-1 and also nuclear binding sites for this endogenous effector points to intracellular functionality of this lectin. It can be considered a potential marker of a distinct cell population, probably at the beginning of a differentiation cascade of keratinocytes.  相似文献   

8.
Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.  相似文献   

9.
Epithelial stem cells: stepping out of their niche   总被引:4,自引:0,他引:4  
Christiano AM 《Cell》2004,118(5):530-532
In this issue of Cell, have shown that two subpopulations of cells exist within the hair follicle stem cell niche. Despite being partially differentiated, clonal populations of suprabasal bulge region cells can regenerate skin and hair follicles as well as a new stem cell niche. The findings suggest that early lineage commitments of epithelial cells in the hair follicle may be reversible.  相似文献   

10.
G Cotsarelis  T T Sun  R M Lavker 《Cell》1990,61(7):1329-1337
Inconsistent with the view that hair follicle stem cells reside in the matrix area of the hair bulb, we found that label-retaining cells exist exclusively in the bulge area of the mouse hair follicle. The bulge consists of a subpopulation of outer root sheath cells located in the midportion of the follicle at the arrector pili muscle attachment site. Keratinocytes in the bulge area are relatively undifferentiated ultrastructurally. They are normally slow cycling, but can be stimulated to proliferate transiently by TPA. Located in a well-protected and nourished environment, these cells mark the lower end of the "permanent" portion of the follicle. Our findings, plus a reevaluation of the literature, suggest that follicular stem cells reside in the bulge region, instead of the lower bulb. This new view provides insights into hair cycle control and the possible involvement of hair follicle stem cells in skin carcinogenesis.  相似文献   

11.
Follicle stem cells (SCs) residing in the bulge region of a hair follicle (HF) can give rise to multiple lineages during the hair cycle and wound healing. The activation and self-renewal of follicle SCs must be tightly regulated to maintain the HF and epidermal homeostasis. Here we show that, in young mice, disruption of epidermal Smad4, the common mediator of transforming growth factor-β (TGF-β) signaling, stimulated the activation of follicle SCs, leading to hyperplasia of interfollicular epidermis (IFE), HFs, and sebaceous glands (SGs). Increased proliferation of follicle SCs ultimately exhausted the SC niche, indicated by the loss of bromodeoxyuridine (BrdU) label–retaining cells (LRCs), loss of keratin 15 (K15), and CD34 expression. In addition, the colony-forming efficiency of Smad4 mutant keratinocytes was significantly decreased. Increased nuclear localization of β-catenin and increased expression of c-Myc were correlated with the overactivation and depletion of follicle SCs. We concluded that Smad4 plays a pivotal role in follicle SC maintenance.  相似文献   

12.
13.
The homeostasis of both cornea and hair follicles depends on a constant supply of progeny cells produced by populations of keratin (K) 14-expressing stem cells localized in specific niches. To investigate the potential role of Co-factors of LIM domains (Clims) in epithelial tissues, we generated transgenic mice expressing a dominant-negative Clim molecule (DN-Clim) under the control of the K14 promoter. As expected, the K14 promoter directed high level expression of the transgene to the basal cells of cornea and epidermis, as well as the outer root sheath of hair follicles. In corneal epithelium, the transgene expression causes decreased expression of adhesion molecule BP180 and defective hemidesmosomes, leading to detachment of corneal epithelium from the underlying stroma, which in turn causes blisters, wounds and an inflammatory response. After a period of epithelial thinning, the corneal epithelium undergoes differentiation to an epidermis-like structure. The K14-DN-Clim mice also develop progressive hair loss due to dysfunctional hair follicles that fail to generate hair shafts. The number of hair follicle stem cells is decreased by at least 60% in K14-DN-Clim mice, indicating that Clims are required for hair follicle stem cell maintenance. In addition, Clim2 interacts with Lhx2 in vivo, suggesting that Clim2 is an essential co-factor for the LIM homeodomain factor Lhx2, which was previously shown to play a role in hair follicle stem cell maintenance. Together, these data indicate that Clim proteins play important roles in the homeostasis of corneal epithelium and hair follicles.  相似文献   

14.
The discovery of long-lived epithelial stem cells in the bulge region of the hair follicle led to the hypothesis that epidermal renewal and epidermal repair after wounding both depend on these cells. To determine whether bulge cells are necessary for epidermal renewal, here we have ablated these cells by targeting them with a suicide gene encoding herpes simplex virus thymidine kinase (HSV-TK) using a Keratin 1-15 (Krt1-15) promoter. We show that ablation leads to complete loss of hair follicles but survival of the epidermis. Through fate-mapping experiments, we find that stem cells in the hair follicle bulge do not normally contribute cells to the epidermis which is organized into epidermal proliferative units, as previously predicted. After epidermal injury, however, cells from the bulge are recruited into the epidermis and migrate in a linear manner toward the center of the wound, ultimately forming a marked radial pattern. Notably, although the bulge-derived cells acquire an epidermal phenotype, most are eliminated from the epidermis over several weeks, indicating that bulge stem cells respond rapidly to epidermal wounding by generating short-lived 'transient amplifying' cells responsible for acute wound repair. Our findings have implications for both gene therapy and developing treatments for wounds because it will be necessary to consider epidermal and hair follicle stem cells as distinct populations.  相似文献   

15.
In early postnatal mouse skin, the NG2 proteoglycan is expressed in the subcutis, the dermis, the outer root sheath of hair follicles, and the basal keratinocyte layer of the epidermis. With further development, NG2 is most prominently expressed by stem cells in the hair follicle bulge region, as also observed in adult human skin. During telogen and anagen phases of the adult hair cycle, NG2 is also found in stem cell populations that reside in dermal papillae and the outer root sheaths of hair follicles. Ablation of NG2 produces alterations in both the epidermis and subcutis layers of neonatal skin. Compared with wild type, the NG2 null epidermis does not achieve its full thickness due to reduced proliferation of basal keratinocytes that serve as the stem cell population in this layer. Thickening of the subcutis is also delayed in NG2 null skin due to deficiencies in the adipocyte population.  相似文献   

16.
Beck B  Blanpain C 《The EMBO journal》2012,31(9):2067-2075
The skin epidermis contains different appendages such as the hair follicle and the sebaceous glands. Recent studies demonstrated that several types of stem cells (SCs) exist in different niches within the epidermis and maintain discrete epidermal compartments, but the exact contribution of each SC populations under physiological conditions is still unclear. In addition, the precise mechanisms controlling the balance between proliferation and differentiation of epidermal SC still remain elusive. Recent studies provide new insights into these important questions by showing the contribution of hair follicle SC to the sebaceous lineage and the importance of chromatin modifications and micro-RNAs (miRs) in regulating epidermal SCs renewal and differentiation. In this review, we will discuss the importance of these papers to our understanding of the mechanisms that control epidermal SC functions.  相似文献   

17.
Although skin contains a number of stem cell repositories, their characterization has been hindered by a lack of specific markers and an unclear in vivo localization. In this study, we whole mounted single human scalp hair follicles and examined their profiles using in situ immunohistochemistry and multicolor immunofluorescence in search of markers to distinguish between stem cells residing in the interfollicular epidermis (IFE) and bulge. Our study revealed that expression of several biomarkers localized uniquely to the basal IFE (CD34 and CD117), bulge region (CD200), or both (CK15, CD49f, and CD29). In addition, we found that both basal IFE and bulge stem cells did not express CD71 or CD24 suggesting their potential utility as negative selection markers. Dermal papilla but not basal IFE or bulge stem cells expressed CD90, making it a potential positive selection marker for dermal hair follicle stem cells. The markers tested in this study may enable pursuit of cell sorting and purification strategies aimed at determining each stem cell population’s unique molecular signature.  相似文献   

18.
Several studies focused on the characterization of bulge keratinocytes have proved that they are multipotent stem cells, being recruited not only to regenerate the hair follicle itself, but also the sebaceous gland and the epidermis. However, due to the difficulty in preparing transplantable cell sheets harvested with conventional enzymatic digestion, there is still no direct evidence of the bulge stem cells’ multipotency. Whether they can respond to adult dermal papilla (DP) signals in recombination experiments also remains unclear. In this study, we addressed this problem by culturing and detaching intact bulge keratinocyte sheets from thermo-responsive culture dishes, only by reducing its temperature. When sheets of mass cultured bulge keratinocytes isolated from rat vibrissa follicles were recombined with fresh adult DPs and sole skin dermis in vivo, regeneration of epidermis and sebaceous gland-like structures, and formation of hair bulb with differentiating inner root sheath and hair cuticle were observed within 3 weeks. However, regardless the expression of stem cells markers like CD34, SA1004 and SA1006, no structures were observed when cloned bulge keratinocytes were used to prepare cell sheets and recombinants, revealing the possible existence of monoclonal stem cells within the bulge region. This report is the first to succeed in harvesting adult bulge keratinocyte sheets. Using these sheets it is demonstrated that bulge stem cells directly respond to adult DP signals to induce hair bulb formation in vivo.  相似文献   

19.
Activation of epithelial stem cells and efficient recruitment of their proliferating progeny plays a critical role in cutaneous wound healing. The reepithelialized wound epidermis has a mosaic composition consisting of progeny that can be traced back both to epidermal and several types of hair follicle stem cells. The contribution of hair follicle stem cells to wound epidermis is particularly intriguing as it involves lineage identity change from follicular to epidermal. Studies from our laboratory show that hair follicle-fated bulge stem cells commit only transient amplifying epidermal progeny that participate in the initial wound re-epithelialization, but eventually are outcompeted by other epidermal clones and largely disappear after a few months. Conversely, recently described stem cell populations residing in the isthmus portion of hair follicle contribute long-lasting progeny toward wound epidermis and, arguably, give rise to new interfollicular epidermal stem cells. The role of epithelial stem cells during wound healing is not limited to regenerating stratified epidermis. By studying regenerative response in large cutaneous wounds, our laboratory uncovered that epithelial cells in the center of the wound can acquire greater morphogenetic plasticity and, together with the underlying wound dermis, can engage in an embryonic-like process of hair follicle neogenesis. Future studies should uncover the cellular and signaling basis of this remarkable adult wound regeneration phenomenon.  相似文献   

20.
Bioengineering the hair follicle: fringe benefits of stem cell technology   总被引:5,自引:0,他引:5  
Recent advances in epithelial stem cell biology have resulted in the isolation of hair follicle stem cells, which generate hair follicles when injected into immunodeficient mice. These isolated hair follicle epithelial stem cells must be combined with 'inductive' dermal cells to produce new hair follicles. The advent of techniques for cultivating inductive dermal cells and competent epithelial stem cells creates the opportunity to bioengineer hair follicles for the treatment of hair loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号