首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The interactions between ADP, Mg2+, and azide that result in the inhibition of the chloroplast F1 ATPase (CF1) have been explored further. The binding of the inhibitory Mg2+ with low Kd is shown to occur only when tightly bound ADP is present at a catalytic site. Either the tightly bound ADP forms part of the Mg(2+)-binding site or it induces conformational changes creating the high-affinity site for inhibitory Mg2+. Kinetic studies show that CF1 forms two catalytically inactive complexes with Mg2+. The first complex results from Mg2+ binding with a Kd for Mg2+ dissociation of about 10-15 microM, followed by a slow conversion to a complex with a Kd of about 4 microM. The rate-limiting step of the CF1 inactivation by Mg2+ is the initial Mg2+ binding. When medium Mg2+ is chelated with EDTA, the two complexes dissociate with half-times of about 1 and 7 min, respectively. Azide enhances the extent of Mg(2+)-dependent inactivation by increasing the affinity of the enzyme for Mg2+ 3-4 times and prevents the reactivation of both complexes of CF1 with ADP and Mg2+. This results from decreasing the rate of Mg2+ release; neither the rate of Mg2+ binding to CF1 nor the rate of isomerization of the first inactive complex to the more stable form is affected by azide. This suggests that the tight-binding site for the inhibitory azide requires prior binding of both ADP and Mg2+.  相似文献   

2.
The kinetic mechanism of yeast inorganic pyrophosphatase (PPase) was examined by carrying out initial velocity studies. Ca2+ and Rh(H2O)4(methylenediphosphonate) (Rh(H2O)4PCP) were used as dead-end inhibitors to study the order of binding of Cr(H2O)4PP to the substrate site and Mg2+ to the "low affinity" activator site on the enzyme. Competitive inhibition was observed for Ca2+ vs Mg2+ (Kis = 0.93 +/- 0.03 mM), for Rh(H2O)4PCP vs Cr(H2O)4PP (Kis = 0.25 +/- 0.07 mM), and for RH(H2O)4PCP vs Mg2+ (Kis = 0.38 +/- 0.03 mM). Uncompetitive inhibition was observed for Ca2+ vs Cr(H2O)4PP (Kii = 0.49 +/- 0.01). On the basis of these results a rapid equilibrium ordered mechanism in which Cr(H2O)4PP binding precedes Mg2+ ion binding is proposed. The inert substrate analog, Mg(imidodiphosphate) (MgPNP) was shown to induce Mg2+ inhibition of the PPase-catalyzed hydrolysis of MgPP. The Mg2+ inhibition observed was competitive vs MgPP and partial. These results suggest that Mg2+/MgPNP release from the enzyme occurs in preferred rather than strict order and that the Mg2+/MgPP-binding steps are at steady state. Zn2+, Co2+, and Mn2+ (but not Mg2+) displayed activator inhibition of the PPase-catalyzed hydrolysis of PPi (this study) and of Cr(H2O)4PP (W.B. Knight, S. Fitts, and D. Dunaway-Mariano, (1981) Biochemistry 20, 4079). These findings suggest that cofactor release from the low affinity cofactor site on the enzyme must precede product release and that Zn2+, Mn2+, and Co2+ (but not Mg2+) have high affinities for the cofactor sites on both the PPase.M.MPP and PPase.M.M(P)2 complexes. The role of the metal cofactor in determining PPase substrate specificity was briefly explored by testing the ability of the Mg2+ complex of tripolyphosphate (PPPi) (a substrate for the Zn2+-activated enzyme but not the Mg2+-activated enzyme) to induce Mg2+ inhibition of PPase-catalyzed hydrolysis of MgPP. MgPPP was shown to be as effective as MgPNP in inducing competitive Mg2+ inhibition (vs MgPP). This result suggests that the low affinity Mg2+ cofactor-binding site present in the enzyme-MgPP complex is maintained in the enzyme-MgPPP complex. Thus, failure of Mg2+ to bind to the enzyme-MgPPP complex was ruled out as a possible explanation for the failure of the Mg2+-activated enzyme to catalyze the hydrolysis of MgPPP.  相似文献   

3.
Markham GD  Reczkowski RS 《Biochemistry》2004,43(12):3415-3425
S-Adenosylmethionine synthetase (ATP: L-methionine S-adenosyltransferase) catalyzes a two-step reaction in which tripolyphosphate (PPPi) is a tightly bound intermediate. Diimidotriphosphate (O(3)P-NH-PO(2)-NH-PO(3); PNPNP), a non-hydrolyzable analogue of PPPi, is the most potent known inhibitor of AdoMet synthetase with a K(i) of 2 nM. The structural basis for the slow, tight-binding inhibition by PNPNP has been investigated by spectroscopic methods. UV difference spectra reveal environmental alterations of aromatic protein residues upon PNPNP binding to form the enzyme.2Mg(2+).PNPNP complex, and more extensive changes upon formation of the enzyme.2Mg(2+).PNPNP.AdoMet complex. Stopped-flow kinetic studies of complex formation revealed that two slow isomerizations follow PNPNP binding in the presence of AdoMet, in contrast to the lower affinity, rapid-equilibrium binding in the absence of AdoMet. (31)P NMR spectra of enzyme complexes with PNPNP revealed electronic perturbations of each phosphorus atom by distinct upfield chemical shifts for each of the three phosphoryl groups in the enzyme.2Mg(2+).PNPNP complex, and further upfield shifts of at least 2 resonances in the complex with AdoMet. Comparison of the chemical shifts for the enzyme-bound PNPNP with the enzyme complexes containing either the product analogue O(3)P-NH-PO(3) or O(3)P-O-PO(2)-NH-PO(3) indicates that the shifts on binding are largest at the binding sites corresponding to those for the alpha and gamma phosphoryl groups of the nucleotide (-3.1 to -4.1 ppm), while the resonance at the beta phosphoryl group position shifts by -2.1 ppm. EPR spectra of Mn(2+) complexes demonstrate spin coupling between the two Mn(2+) in both enzyme.2Mn(2+).PNPNP and enzyme.2Mn(2+).PNPNP.AdoMet, indicating that the metal ions have comparable distances in both cases. The combined results indicate that formation of the highest affinity complex is associated with protein side chain rearrangements and increased electron density at the ligand phosphorus atoms, likely due to ionization of an -NH- group of the inhibitor. The energetic feasibility of ionization of a -NH- group when two Mg(2+) ions are bound to O(3)P-NH-PO(3) is supported by density functional theoretical calculations on model chelates. This mode of interaction is uniquely available to compounds with P-NH-P linkages and may be possible with other proteins in which multiple cations coordinate a polyphosphate chain.  相似文献   

4.
The kinetic data of magnesium and inorganic phosphate inhibition of the (Na+,K+)-dependent ATP hydrolysis are consistent with a model where both ligands act independently and their release in the ATPase cycle is an ordered process where inorganic phosphate is released first. The effects of magnesium on the stimulation of the ATPase activity by Na+, K+ and ATP, and the inhibition of that activity by inorganic phosphate, are consistent with Mg2+ acting both as a 'product' and as a dead-end inhibitor. The dead-end Mg-enzyme complex would be produced with an enzyme form located downstream in the reaction sequence from the point where Mg2+ acts as a 'product' inhibitor. In the absence of K+, Mg2+ inhibition was reduced when either Na+ or ATP concentrations were increased well beyond those concentrations needed to saturate their high-affinity sites. This ATP effect suggests that the dead-end Mg-enzyme complex formation is affected by the speed of the E2-E1 conformational change. The present model is consistent with the formation of an Mg-phosphoenzyme complex insensitive to K+ which could become K+-sensitive in the presence of high Na+ concentrations. These Mg-enzyme complexes appear as intermediaries in the Na+-ATPase activity found in the absence of external Na+ and K+. These results can be interpreted on the basis of Mg2+ binding to a single site in the enzyme molecule. In addition, these experiments provide kinetic evidence indicating that the stimulation by external Na+ of the ATPase activity in the absence of K+ is due to a K+-like action of Na+ on the external K+ sites.  相似文献   

5.
The F1 moiety of the rat liver mitochondrial ATP synthase/ATPase complex contains as isolated 2 mol Mg2+/mol F1, 1 mol of which is nonexchangeable and the other which is exchangeable (N. Williams, J. Hullihen, and P.L. Pedersen, (1987) Biochemistry 26, 162-169). In addition, the enzyme binds 1 mol ADP/mol F1 and 3 mol AMP.PNP, the latter of which can bind in complex formation with divalent cation and displace the Mg2+ at the exchangeable site. Thus, in terms of ligand binding sites the fully loaded rat liver F1 complex contains 3 mol MgAMP.PNP, 1 mol ADP, and 1 mol Mg2+. In this study we have used several metal ATP complexes or analogs thereof to gain further insight into the ligand binding domains of rat liver F1 and the mechanism by which it catalyzes ATP hydrolysis in soluble and membrane bound form. Studies with LaATP confirmed that MgATP is the most likely substrate for rat liver F1, and provided evidence that the enzyme may contain additional Mg2+ binding sites, undetected in previous studies of F1-ATPases, that are required for catalytic activity. Thus, F1 containing the thermodynamically stable LaATP complex in place of MgATP requires added Mg2+ to induce ATP hydrolysis. As Mg2+ cannot readily displace La2+ under these conditions there appears to be a catalytically important class of Mg2+ binding sites on rat liver F1, distinct from the nonexchangeable Mg2+ site and the sites involved in binding MgATP. Additional studies carried out with exchange inert metal-nucleotide complexes involving rhodium and the Mg2+ and Cd2+ complexes of ATP beta S and ATP alpha S imply that the rate-limiting step in the ATPase reaction pathway occurs subsequent to the P gamma-O-P beta bond cleavage steps, perhaps at the level of Mg(ADP)(Pi) hydrolysis or MgADP release. Evidence is presented that Mg2+ remains coordinated to the leaving group of the reaction, i.e., the beta phosphoryl group. Finally, in contrast to soluble F1, F1 bound to F0 in the inner mitochondrial membrane failed to discriminate between the Mg2+ complexes of the ATP beta S isomers. This indicates that a fundamental difference may exist between the catalytic or kinetic mechanism of F1 and the more physiologically intact F0F1 complex.  相似文献   

6.
7.
We developed a sedimentation assay to characterize and quantify the association of purified lysosomes to reconstituted microtubules (Mithieux, G., Audebet, C. and Rousset. B. (1988) Biochim. Biophys. Acta 969, 121-130). In the present work, we have examined the potential regulatory role of ATP and Mg2+ on the microtubule-lysosome interaction. The formation of microtubule-lysosome complexes takes place in the absence of Mg2+, but is activated by the addition of Mg2+; both the rate of the interaction and the amount of complexes formed are increased. The maximal effect is observed between 1.5 and 3.5 mM free Mg2+. Measured at the plateau of the interaction, the proportion of microtubules bound to lysosomes increases as a function of free Mg2+ concentration; at optimal concentration of free Mg2+, 90% of the microtubules present in the incubation mixture are bound to lysosomes. ATP induces a concentration-dependent inhibition of the formation of microtubule-lysosome complexes. The half-maximal effect is obtained at an ATP concentration of 0.83 +/- 0.11 mM (n = 7). The effect of ATP is not related to ATP hydrolysis, since ATP exerts its inhibitory action in the presence of EDTA. The ATP effect is mimicked by GTP, p[NH]ppA and tripolyphosphate, ADP and pyrophosphate, but not by AMP or phosphate. In the presence of 1 mM ATP, a Mg2+ concentration of 3 mM (corresponding to 2 mM free Mg2+) is required to overcome the inhibition caused by ATP; above 3 mM, Mg2+ exerts its activating effect. Since the modulating effects of ATP and Mg2+ are obtained at concentrations closed to those occurring in intact cells, we conclude that the regulation of the microtubule-lysosome interaction reported in this paper could be of physiological significance.  相似文献   

8.
P A Fortes 《Biochemistry》1977,16(3):531-540
Anthroylouabain (AO) was synthesized by reaction of anthracene-9-carboxylic chloride with ouabain. Nuclear magnetic resonance spectroscopy of AO suggests that the anthracene is esterfied to the rhamnose in the glycoside. AO inhibits Na-K ATPase from human red cells, eel electroplax and rabbit and dog kidney with a KI less than 1muM. AO bound to rabbit or dog kidney Na-K ATPase shows enhanced fluorescence and characteristic spectral shifts. AO binding requires Mg and is optimum in the presence of Mg + Pi or MgATP + Na; ouabain prevents AO binding and fluorescence enhancement if added before AO or reverses it if added after AO is bound. Na inhibits AO binding in the presence of Mg + Pi and K inhibits it in the presence of MgATP + Na. AO binding and dissociation rate constants measured by fluorescence agree qualitatively with reported measurements for ouabain, using other methods, although AO shows faster kinetics than ouabain. Dissociation constants obtained from kinetic measurements are 1.5 X 10(-7) and 1.8 X 10(-7) M for the MgATP + Na complex and Mg + Pi complex, respectively. KD from fluorescence titrations is 2.3 X 10(-7) M for the latter. The enzyme has 2-2.5 nmol of AO binding sites/mg of protein. No differences in the fluorescence parameters of the Mg + Pi or MgATP + Na complexes were observed, suggesting that the same enzyme conformation binds AO under both ligand conditions. Comparison of the AO fluorescence parameters in the enzyme with those of model systems suggests that the binding site is hydrophobic and/or viscous and shielded from H2O. The results indicate that AO is a specific fluorescent probe of the cardiac glycoside receptor of the Na-K ATPase. Possible applications are discussed.  相似文献   

9.
Progress curves of the reaction catalysed by pyruvate kinase from Escherichia coli K12, designed to cover the four-dimensional concentration space of phosphoenolpyruvate, ADP, Mg2+ and ATP in the regulatory region, were recorded with the pH-stat method (pH 7.0 and 25 degrees C). Additional initial-rate measurement were performed to assess specific points. Two methods for the evaluation of progress curves were used: fitting the rate law to the rates obtained from the tangents of the progress curves and fitting the integrated rate law directly to the curves. Two models, both extensions of the concerted model given by Monod, Wyman & Changeux [(1965) J. Mol. Biol. 12, 88--118] with four protomers, could be fitted to the data within the experimental error. Model discrimination in favour of one of these models was possible by proper experimental design. In the selected model one conformational state of the enzyme forms the active complex. The active site of a second conformational state forms abortive complexes with Mg2+, causing strong inhibition at high Mg2+ concentrations. In the absence of ligands, most of the enzyme is in a third state that binds ATP at an allosteric site.  相似文献   

10.
Vanadate is able to promote the binding of ouabain to (Na+ +K+)-ATPase and it is shown that vanadate is trapped in the enzyme-ouabain complex. Also ouabain-bound enzyme, the formation of which was facilitated by (Mg2+ +Na+ +ATP) or (Mg2+ +Pi), is accessible to vanadate when washed free of competing ligands used for the promotion of ouabain binding. For vanadate binding to (Na+ +K+)-ATPase and to enzyme-ouabain complexes a divalent cation (Mg2+ or Mn2+) is indispensable, indicating that the cation does not remain attached to the ouabain-bound enzyme. K+ further increases vanadate binding in the absence of ouabain, but seems to have no additional role in case of vanadate binding to enzyme-ouabain complexes. Mn2+ is more efficient than Mg2+ in promoting binding of vanadate and ouabain to (Na+ +K+)-ATPase. That K+ in combination with Mn2+, in analogy with the effect in combination with Mg2+, increases the equilibrium binding level of vanadate and decreases that of ouabain does not seem to favour the hypothesis of selection of a special E2-subconformation by Mn2+. The vanadate-trapped enzyme-ouabain complex was examined for simultaneous nucleotide binding which could demonstrate a two-substrate mechanism per functional unit of the enzyme. The acceleration by (Na+ +ATP) of ouabain release from the (Mg2+ +Pi)-facilitated enzyme-ouabain complex does not, as anticipated, support such a mechanism. On the other hand, the deceleration of vanadate release as well as of ouabain release from a (Mg2+ +vanadate)-promoted complex could be consistent with a two-substrate mechanism working out-of-phase.  相似文献   

11.
An ATPase complex sensitive to the energy transfer inhibitors oligomycin, dicyclohexylcarbodiimide and venturicidin has been solubilized from Rhodospirillum rubrum chromatophores with Triton X-100 and further purified by centrifugation on a glycerol gradient. The partially purified RrFo . F1 contains 13 distinct polypeptide subunits, as revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, including the subunits of the oligomycin-sensitive, water-soluble RrF1 ATPase. The ATPase activity of RrF0 . F1 as that of the membrane-bound enzyme complex depends on Ca2+ or Mg2+ and from detailed kinetic studies it is concluded that the divalent cation-ATP complex is the substrate for both ATPase complexes. Free ATP and free Mg2+ act as competitive inhibitors, with Ki values of 1 mM and 7 muM, respectively. The subunit composition of the purified RrFo . F1 and its similarity to the membrane-bound ATPase with respect to cation dependence and sensitivity to energy transfer inhibitors suggests that it contains all the subunits of the R. rubrum coupling factor-ATPase complex.  相似文献   

12.
W J Ray  J M Puvathingal 《Biochemistry》1990,29(11):2790-2801
The inhibitor complex produced by the binding of alpha-D-glucose 1-phosphate 6-vanadate to the dephospho form of muscle phosphoglucomutase exhibits an unusually small dissociation constant: about 15 fM for the Mg2+ enzyme at pH 7.4, when calculated in terms of the tetraanion. Such tight binding suggests that the enzyme/vanadate/glucose phosphate complex mimics a state that at least approaches the transition state for (PO3-) transfer in the normal enzymic reaction. This hypothesis also is supported by the observation that replacement of Mg2+, the normal metal ion activator, by Li+, a poor activator, substantially reduces the binding constant for the glucose phosphate/vanadate mixed diester. Other indicators that support this hypothesis are described. One is the derived equilibrium constant for replacement of a PO4(2-) group in bound glucose bisphosphate by VO4(2-): 3 x 10(6) when the replaced group is the phosphate at the (PO3-) transfer site of the Mg2+ enzyme--in contrast to about 10 for the same replacement (of PO4(2-) by VO4(2-)) in an aqueous solution of a phosphate ester. Another is the greatly decreased rate at which Mg2+ dissociates from the glucose phosphate/vanadate complex of the enzyme, relative to the rate at which it dissociates from the corresponding bisphosphate complex (rate ratio less than or equal to 3 x 10(-4)), presumably because Mg2+ binds more tightly to the glucose phosphate/vanadate complex than to the corresponding bisphosphate complex. This apparent increase in Mg2+ binding occurs in spite of what appears to be a reduced charge density at the bound vanadate grouping, relative to the bound phosphate grouping, and in spite of the somewhat weaker binding of Mg2+ by dianionic vanadate than by the phosphate dianion. Although a direct assessment of the binding constant for Mg2+ was not possible, the equilibrium constant for Mg2+/Li+ exchange could be evaluated for the complexes of dephospho enzyme with glucose bisphosphate or glucose 1-phosphate 6-vanadate. The results suggest that the glucose phosphate/vanadate complex of the Mg2+ enzyme mimics a state about halfway between the ground state and the transition state for (PO3-) transfer. This estimate also is in accord with the binding of glucose phosphate/vanadate relative to that expected for transition-state binding of glucose bisphosphate. A possible scenario for the (PO3-) transfer catalyzed by the Mg2+ form of phosphoglucomutase is discussed, on the basis of these observations, together with possible reasons why the bound vanadate group appears to mimic an intermediate state for (PO3-) transfer rather than the ground state for phosphate binding.  相似文献   

13.
A divalent cation electrode was used to measure the stability constants (association constants) for the magnesium and manganese complexes of the substrates for the NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) from pea stems. At an ionic strength of 26.5 mM and at pH 7.4 the stability constants for the Mg2+-isocitrate and Mg2+-NADP+ complexes were 0.85 +/- 0.2 and 0.43 +/- 0.04 mM-1 respectively and for the Mn2+-isocitrate and Mn2+-NADP+ complexes they were 1.25 +/- 0.07 and 0.75 +/- 0.09 mM-1 respectively. At the same ionic strength but at pH 6.0 the Mg2+-NADPH and Mn2+-NADPH complexes had stability constants of 0.95 +/- 0.23 and 1.79 +/- 0.34 mM-1 respectively. Oxalosuccinate and alpha-ketoglutarate do not form measureable complexes under these conditions. Saturation kinetics of the enzyme with respect to isocitrate and metal ions are consistent with the metal-isocitrate complex being the substrate for the enzyme. NADP+ binds to the enzyme in the free form. Saturation kinetics of NADPH and Mn2+ indicate that the metal-NADPH complex is the substrate in the reverse reaction. In contrast the pig heart enzyme appears to bind free NADPH and Mn2+. A scheme for the reaction mechanism is presented and the difference between the reversibility of the NAD+ and NADP+ enzyme is discussed in relation to the stability of the NADH and NADPH metal complexes.  相似文献   

14.
Sheep liver cytoplasmic aldehyde dehydrogenase is strongly inhibited by Mg2+, Ca2+ and Mn2+. The inhibition is only partial, however, with 8-15% of activity remaining at high concentrations of these agents. In 50 mM-Tris/Hcl, pH 7.5, the concentrations giving half-maximal effect were: Mg2+, 6.5 micrometers; Ca2+, 15.2 micrometers; Mn2+, 1.5 micrometer. The esterase activity of the enzyme is not affected by such low metal ion concentrations, but appears to be activated by high concentrations. Fluorescence-titration and stopped-flow experiments provide evidence for interaction of Mg2+ with NADH complexes of the enzyme. As no evidence for the presence of increased concentrations of functioning active centres was obtained in the presence of Mg2+, it is concluded that effects of Mg2+ (and presumably Ca2+ and Mn2+ also) are brought about by trapping increased concentrations of NADH in a Mg2+-containing complex. This complex must liberate products more slowly than any of the complexes involved in the non-inhibited mechanism.  相似文献   

15.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated. The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed. The enzyme . ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme . ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi. The presence or absence of Na+ during binding has a special influence upon the character of the enzyme . ouabian complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme . ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme . ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate of Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration. It is proposed that the different ouabain dissociation rates reflect different reactive states of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

16.
Ubiquitin adenylate: structure and role in ubiquitin activation   总被引:2,自引:0,他引:2  
A L Haas  J V Warms  I A Rose 《Biochemistry》1983,22(19):4388-4394
The acid precipitate of the ubiquitin activating enzyme after reaction with ATP and ubiquitin contains one enzyme equivalent of ubiquitin adenylate in which the carboxyl-terminal glycine of ubiquitin and AMP are in an acyl-phosphate linkage. The recovered ubiquitin adenylate has the catalytic properties proposed for it as a reaction intermediate. Thus, upon reaction with fresh enzyme in the absence of Mg2+ or ATP, the product complex, E-ubiquitin . AMP-ubiquitin, is formed. This complex is capable of generating ubiquitin-protein isopeptide derivatives when added to a reticulocyte fraction that catalyzes protein conjugation. This reproduces the effect previously shown to require ubiquitin, ATP, and Mg2+. In the presence of activating enzyme, ubiquitin adenylate is converted to ATP and free ubiquitin in a step requiring PPi and Mg2+. On the basis of studies of [32P]PPi/nucleoside triphosphate exchange, the activating enzyme could be used to generate 2'-deoxy-AMP-, 2'-deoxy-IMP-, and 2'-deoxy-GMP-ubiquitin but not pyrimidine nucleotide-ubiquitin derivatives. The enzyme shows a modest preference for the pro-S diastereomers of adenosine 5'-O-(1-thiotriphosphate) and adenosine 5'-O-(2-thiotriphosphate). Inorganic phosphate, arsenate, methyl phosphate, and tripolyphosphate, but not nucleoside triphosphates, can serve as alternate substrates in place of PPi in the reverse of ubiquitin adenylate formation. Therefore, the enzyme catalyzes the unusual reaction ATP + Pi in equilibrium ADP + PPi in the presence of ubiquitin.  相似文献   

17.
D Fleischman  M Denisevich 《Biochemistry》1979,18(23):5060-5066
The guanylate cyclase activity of axoneme--basal apparatus complexes isolated from bovine retinal rods has been investigated. The Mg2+ and Mn2+ complexes of GTP4- serve as substrates. Binding of an additional mole of Mg2+ or Mn2+ per mole of enzyme is required. Among cations which are ineffective are Ca2+, Ni2+, Fe2+, Fe3+, Zn2+, and Co2+. The kinetics are consistent with a mechanism in which binding of Mg2+ or Mn2+ to the enzyme must precede binding of MgGTP or MnGTP. The apparent dissociation constants of the Mg--enzyme complex and the Mn--enzyme complex are 9.5 x 10(-4) and 1.1 x 10(-4) M, respectively. The apparent dissociation constants for binding of MgGTP and MnGTP to the complex of the enzyme with the same metal are 7.9 x 10(-4) and 1.4 x 10(-4) M, respectively. The cyclase activity is maximal and independent of pH between pH 7 and 9. KCl and NaCl are stimulatory, especially at suboptimal concentrations of Mg2+ or Mn2+. Ca2+ and high concentrations of Mg2+ and Mn2+ are inhibitory. Ca2+ inhibition appears to require the binding of 2 mol of Ca2+ per mol of enzyme. The dissociation constant of the Ca2--enzyme complex is estimated to be 1.4 x 10(-6) M2. The axoneme--basal apparatus preparations contain adenylate cyclase activity whose magnitude is 1--10% that of the guanylate cyclase activity.  相似文献   

18.
L Lebioda  B Stec  J M Brewer  E Tykarska 《Biochemistry》1991,30(11):2823-2827
Enolase is a metalloenzyme which catalyzes the elimination of H2O from 2-phosphoglyceric acid (PGA) to form phosphoenolpyruvate (PEP). Mg2+ and Zn2+ are cofactors which strongly bind and activate the enzyme. Ca2+ also binds strongly but does not produce activity. Phosphoglycolate (PG) is a competitive inhibitor of enolase. The structures of two inhibitory ternary complexes: yeast enolase-Ca2(+)-PGA and yeast enolase-Zn2(+)-PG, were determined by X-ray diffraction to 2.2-A resolution and were refined by crystallographic least-squares to R = 14.8% and 15.7%, respectively, with good geometries of the models. These structures are compared with the structure of the precatalytic ternary complex enolase-Mg2(+)-PGA/PEP (Lebioda & Stec, 1991). In the complex enolase-Ca2(+)-PGA, the PGA molecule coordinates to the Ca2+ ion with the hydroxyl group, as in the precatalytic complex. The conformation of the PGA molecule is however different. In the active complex, the organic part of the PGA molecule is planar, similar to the product. In the inhibitory complex, the carboxylic group is in an orthonormal conformation. In the inhibitory complex enolase-Zn2(+)-PG, the PG molecule coordinates with the carboxylic group in a monodentate mode. In both inhibitory complexes, the conformational changes in flexible loops, which were observed in the precatalytic complex, do not take place. The lack of catalytic metal ion binding suggests that these conformational changes are necessary for the formation of the catalytic metal ion binding site.  相似文献   

19.
The formation of a complex between the catalytic subunit of the cAMP-dependent protein kinase and the Inhibitor Protein of this enzyme has been examined by means of nondenaturing gel electrophoresis. Two forms of complex were identified, both containing a 1:1 molar ratio of the component proteins. The formation of the major of the two forms is markedly enhanced by the presence of nucleotide triphosphate and divalent cation. Either Mg2+ or Mn2+ serves to promote complex formation. With Mg2+, only ATP is effective for enhancing complex formation, whereas with Mn2+ complex formation occurs to an equal extent with ATP, GTP, ITP, and adenyl-5'-yl imidodiphosphate. The formation of the two complexes is only minimally dependent upon nucleotide triphosphate. It is suggested that the two types of complex are a result of different species of catalytic subunit. Two principal forms of the complex have been detected occurring maximally in approximately a 2.5:1 ratio. In the accompanying paper (Fletcher, W.H., Van Patten, S.M., Cheng, H-C., and Walsh, D.A. (1986) J. Biol. Chem. 261, 5504-5513), we have described the use of a fluoresceinated derivative of catalytic subunit as a cytochemical probe to localize the Inhibitor Protein and the regulatory subunit of the protein kinase. The integrity of this fluorophore has been further characterized using the method of examining catalytic subunit-Inhibitor Protein interaction delineated here.  相似文献   

20.
Net rate constants that define the steady-state rate through a sequence of steps and the corresponding effective energy barriers for two (PO3-)-transfer steps in the phosphoglucomutase reaction were compared as a function of metal ion, M, where M = Mg2+ and Cd2+. These steps involve the reaction of either the 1-phosphate or the 6-phosphate of glucose 1,6-bisphosphate (Glc-P2) bound to the dephosphoenzyme (ED) to produce the phosphoenzyme (EP) and the free monophosphates, glucose 1-phosphate (Glc-1-P) or glucose 6-phosphate (Glc-6-P): EP.M + Glc-1-P----ED.M.Glc-P2----EP.M.Glc-6-P6. Before this comparison was made, net rate constants for the Cd2+ enzyme, obtained at high enzyme concentration via 31P NMR saturation-transfer studies [Post, C. B., Ray, W. J., Jr., & Gorenstein, D. G. (1989) Biochemistry (preceding paper in this issue)], were appropriately scaled by using the observed constants to calculate both the expected isotope-transfer rate at equilibrium and the steady-state rate under initial velocity conditions and comparing the calculated values with those measured in dilute solution. For the Mg2+ enzyme, narrow limits on possible values of the corresponding net rate constants were imposed on the basis of initial velocity rate constants for the forward and reverse directions plus values for the equilibrium distribution of central complexes, since direct measurement is not feasible. The effective energy barriers for both the Mg2+ and Cd2+ enzymes, calculated from the respective net rate constants, together with previously values for the equilibrium distribution of complexes in both enzymic systems [Ray, W. J., Jr., & Long, J. W. (1976) Biochemistry 15, 4018-4025], show that the 100-fold decrease in the kappa cat for the Cd2+ relative to the Mg2+ enzyme is caused by two factors: the increased stability of the intermediate bisphosphate complex and the decreased ability to cope with the phosphate ester involving the 1-hydroxyl group of the glucose ring. In fact, it is unlikely that the efficiency of (PO3-) transfer to the 6-hydroxyl group of bound Glc-1-P (thermodynamically favorable direction) is reduced by more than an order of magnitude in the Cd2+ enzyme. By contrast, the efficiency of the Li+ enzyme in the same (PO3-)-transfer step is less than 4 x 10(-8) that of the Mg2+ enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号