首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we investigated the effect of aging on spermatogonial stem cells (SSCs) and on the testicular somatic environment in ROSA26 mice. First, we examined testis weights at 2 mo, 6 mo, 1 yr, and 2 yr of age. At 1 and 2 yr, bilateral atrophied testes were observed in 50% and 75% of the mice, respectively; the rest of the mice had testis weights similar to those of young mice. Next, we evaluated the number and the activity of aged SSCs using spermatogonial transplantation. Numbers of SSCs in atrophied testes decreased in an age-dependent manner to as low as 1/60 of those in testes of young mice. Numbers of SSCs in nonregressed testes were similar regardless of age. The colony length, which is indicative of the potential of SSCs to regenerate spermatogenesis, was similar with donor cells from atrophied testes of 1-yr-old mice and those from testes of young mice, suggesting that SSCs remaining in 1-yr atrophied testes were functionally intact. Colonies arising from SSCs derived from 2-yr atrophied testes were significantly shorter, however, indicating that both SSC numbers and activity declined with age. Finally, we transplanted donor cells from young animals into 1- and 2-yr atrophied testes. Although the weight of 2-yr testes did not change after transplantation, that of 1-yr testes increased significantly, indicating that 1-yr, but not 2-yr, atrophied testes are permissive for regeneration of spermatogenesis by SSCs from young mouse testes. These results demonstrate that both SSCs and somatic environment in the testis are involved in the aging process.  相似文献   

2.
Azoospermia or oligozoospermia due to disruption of spermatogenesis are common causes of human male infertility. We used the technique of spermatogonial transplantation in two infertile mouse strains, Steel (Sl) and dominant white spotting (W), to determine if stem cells from an infertile male were capable of generating spermatogenesis. Transplantation of germ cells from infertile Sl/Sld mutant male mice to infertile W/Wv or Wv/W54 mutant male mice restored fertility to the recipient mice. Thus, transplantation of spermatogonial stem cells from an infertile donor to a permissive testicular environment can restore fertility and result in progeny with the genetic makeup of the infertile donor male.  相似文献   

3.
Maintenance of mouse male germ line stem cells in vitro   总被引:23,自引:0,他引:23  
The proliferation and differentiation of a stem cell are regulated intrinsically by the stem cell and extrinsically by the stem cell niche. Elucidation of regulatory mechanisms of spermatogonial stem cells (SSCs), the stem cell of the postnatal male germ line, would be facilitated by in vitro studies that provide a defined microenvironment reconstituted ex vivo. We analyzed the effect of in vitro environment on the maintenance of adult and immature SSCs in a 7-day culture system. Although the number of adult and immature SSCs decreased in a time-dependent manner, nearly one in four stem cells (24%) could be maintained in vitro for 7 days. Stem cell maintenance was enhanced by coculture with OP9 bone marrow stroma or L fibroblast cell lines, addition of glial cell line-derived neurotrophic factor, or utilization of specific culture medium. In contrast, coculture with TM4 or SF7 Sertoli cell lines and addition of activin A or bone morphogenetic protein 4 (BMP4) reduced stem cell maintenance in vitro. Only 4% of the stem cells remained when cultured with TM4 cells or activin A, and 6% remained when cultured with SF7 cells or BMP4. These results lead to the hypothesis that suppression of germ cell differentiation improves in vitro maintenance of SSCs by interrupting the unidirectional cascade of spermatogenesis and blocking stem cell differentiation.  相似文献   

4.
Stem cells in the male germ line (spermatogonial stem cells [SSCs]) are an important target for male fertility restoration and germ line gene modification. To establish a model system to study the biology and the applications of SSCs in mice, I used a sequential transplantation strategy to analyze the process by which SSCs colonize the stem cell niche after transplantation and to determine the efficiency of the process (homing efficiency). I further analyzed the proliferation kinetics of SSCs after colonization. The number of SSCs gradually decreased during the homing process, and only 12% of SSCs successfully colonized the niche on Day 7 after transplantation, but the number of SSCs increased by Day 14. Thus, homing efficiency of adult mouse SSCs is 12%. These results indicate that SSCs are rapidly lost upon transplantation and require approximately 1 wk to settle into their niches before initiating expansion. Using this SSC homing efficiency, I calculated that approximately 3000 SSCs exist in one normal adult testis, representing approximately 0.01% of total testis cells. Between 7 days and 1 mo after transplantation, SSCs proliferated 7.5-fold. However, they did not significantly proliferate thereafter until 2 mo, and only 8 SSCs supported one colony of donor-derived spermatogenesis from 1 to 2 mo. These results suggest that self-renewal and differentiation of SSCs are strictly regulated in coordination with the progress of an entire unit of regenerating spermatogenesis.  相似文献   

5.
The testis is one of several immune-privileged organs and is known for its unique ability to support allogeneic or xenogeneic tissue transplants. We investigated the possibility of deriving offspring from mice that underwent transplantation with allogeneic male germ line stem cells in the testis. Although mature adult mice rejected allogeneic germ cells and were infertile, offspring were obtained by intracytoplasmic germ cell injection using partially differentiated donor cells. In contrast, complete spermatogenesis occurred when allogeneic germ cells were transplanted into immature pup testes. Tolerance induction by monoclonal antibody administration allowed the pup transplant recipients to produce allogeneic offspring by natural mating, whereas no spermatozoa were found in the epididymis of untreated recipients. Thus, these results indicate that a histoincompatible recipient can serve as a "surrogate father" to propagate the genetic information of heterologous male donors.  相似文献   

6.
Mice chimeric for embryonic stem (ES) cells have not always successfully produced ES-derived offspring. Here we show that the male gametes from ES cells could be selected in male chimeric mice testes by labeling donor ES cells or host blastocytes with GFP. Male GFP-expressing ES-derived germ cells occurred as colonies in the chimeric testes, where the seminiferous tubules were separated into green and non-green regions. When mature spermatozoa from green tubules were used for microinsemination, GFP-expressing offspring were efficiently obtained. Using a reverse study, we also obtained ES-derived progeny from GFP-negative ES cells in GFP-labeled host chimeras. Furthermore, we showed this approach could be accelerated by using round spermatids from the testes of 20-day-old chimeric mice. Thus, this technique allowed us to generate the ES cell-derived progeny even from the low contributed chimeric mice, which cannot produce ES-origin offspring by natural mating.  相似文献   

7.
8.
Immortalization of bovine germ line stem cells by c-myc and hTERT   总被引:1,自引:0,他引:1  
The limited life span of bovine germ line stem cells in vitro is one of the obstacles to spermatogenesis analysis, genetic manipulation and generating transgenic animal. The aim of this study is to establish immortalized bovine germ line stem cells by c-myc or hTERT. We constructed pEMY and pETE expression vectors and transfected germ line cells from 5-month-old bovine. After G418 screening, four types of positive clones were obtained. The results showed that they expressed exogenous genes c-myc or hTERT at mRNA and protein level by RT-PCR and Western blotting detection. Presumable cell lines GM7, GT3, GMT5 all expressed germ-line-stem-cell-specific makers by immunocytochemical analysis, such as c-kit, Oct-4 and GFR-1. The putative cell lines also had higher capacity of proliferation than freshly isolated bovine spermatogonial stem cells. So we can conclude that exogenous genes c-myc or hTERT have integrated into the genome of bovine germ cells and upregulated the expression of telomerase.  相似文献   

9.
Spermatogonial stem cells (SSCs) are stem cells of the male germ line. In mice, SSCs are quiescent at birth but actively proliferate during the first postnatal week, while they rarely divide in adult, suggesting an age-dependent difference in SSC characteristics. As an approach to evaluate this possibility, we studied the expression pattern of cell-surface molecules on neonatal, pup, and adult mouse SSCs. Using immunomagnetic cell sorting, testis cells were selected for the expression of alpha(6) integrin, alpha(v) integrin, c-kit receptor tyrosine kinase (Kit), or a binding subunit of glial-cell-line-derived neurotrophic factor (GDNF) receptor, GFRalpha1. Selected cells were assayed for their stem cell activity using spermatogonial transplantation. The results showed that SSCs expressed alpha(6) integrin, but not alpha(v) integrin and Kit, regardless of age. The SSC activity in pup GFRalpha1(+) cells was higher than that in adult and neonatal cells, indicating that the expression pattern of GFRalpha1 varied age-dependently. To evaluate if SSCs show an age-dependent difference in their response to GDNF, we cultured highly enriched pup and adult SSCs with GDNF: we could not observe such an age-dependent difference in vitro. In addition, we failed to immunologically detect the expression of two types of GDNF receptor signaling subunits on SSCs. These results indicate that SSCs may change the expression patterns of cell-surface molecules during postnatal development, and suggest that GDNF receptor molecules may not be abundantly or specifically expressed in the in vivo population of mouse SSCs.  相似文献   

10.
H W Renner  M Knoll 《Mutation research》1984,140(2-3):127-129
The alkylating agent cyclophosphamide (CPA) and the antioxidant ethoxyquin (EQ) were administered perorally to NMRI mice. The strong clastogenic action of CPA on spermatogonia was diminished by simultaneous doses of EQ. Higher doses of the antioxidant produced greater anticlastogenic action. Furthermore, the action of the mutagen and the antioxidant on the late spermatids and the spermatozoa was observed using the dominant lethal test. The antioxidant had only a weak influence on these postmeiotic stages.  相似文献   

11.
Dyce PW  Liu J  Tayade C  Kidder GM  Betts DH  Li J 《PloS one》2011,6(5):e20339
We previously reported that fetal porcine skin-derived stem cells were capable of differentiation into oocyte-like cells (OLCs). Here we report that newborn mice skin-derived stem cells are also capable of differentiating into early OLCs. Using stem cells from mice that are transgenic for Oct4 germline distal enhancer-GFP, germ cells resulting from their differentiation are expected to be GFP(+). After differentiation, some GFP(+) OLCs reached 40-45 μM and expressed oocyte markers. Flow cytometric analysis revealed that ~ 0.3% of the freshly isolated skin cells were GFP(+). The GFP-positive cells increased to ~ 7% after differentiation, suggesting that the GFP(+) cells could be of in vivo origin, but are more likely induced upon being cultured in vitro. To study the in vivo germ cell potential of skin-derived cells, they were aggregated with newborn ovarian cells, and transplanted under the kidney capsule of ovariectomized mice. GFP(+) oocytes were identified within a subpopulation of follicles in the resulting growth. Our finding that early oocytes can be differentiated from mice skin-derived cells in defined medium may offer a new in vitro model to study germ cell formation and oogenesis.  相似文献   

12.
13.
The exogenous Moloney leukemia virus (M-MuLV) was inserted into the germ line of mice by exposing embryos to virus at different stages of embryogenesis. Mice derived from exposed embryos were mosaics with respect to integrated virus. Nine new substrains, designated Mov-5 to Mov-13, were derived, each of which carries a single M-MuLV genome at a different chromosomal position in its germ line. Four substrains, Mov-1 to Mov-4, were derived previously. Restriction enzyme analyses demonstrated that, with the exception of Mov-4 and Mov-6 mice, no major rearrangements or deletions have occurred in the integrated proviral genomes. Infectious virus is not activated in the majority of substrains (Mov-4 to Mov-8 and Mov-10 to Mov-12), whereas the other mice develop viremia. A detailed comparison between Mov-1 and Mov-13 mice demonstrated that the time of virus activation is different. Mov-13 mice activate infectious virus during embryogenesis, leading to a distinct pattern of virus expression in all tissues of the adult, but the viral genome in Mov-1 mice is activated only during the first two weeks after birth, leading to virus expression predominantly in lymphatic organs. Together with previous observations, at least four different phenotypes of virus expression—that is, early virus activation during embryogenesis, virus activation after birth, virus activation late in life and no expression of infectious virus at all—can be distinguished among the 13 substrains. Our results suggest that the chromosomal region at which a viral genome is integrated influences its expression during development and differentiation.  相似文献   

14.
Intrinsic primordial germ cells (PGCs) from stage 27 (5-day-old) chick embryonic germinal ridges were cultured in vitro for a further 5 days, and shown to proliferate on stroma cells derived from the germinal ridge. To determine whether these cultured PGCs could colonize and contribute to the germ-line, PGCs were isolated by gentle pipetting, labeled with PKH26 fluorescent dye and injected into the blood stream of stage 17 (2.5-day-old) chick embryos. The recipient embryos were incubated until they reached stage 28. Thin sections of these embryos were analysed by fluorescent confocal laser microscopy. These analyses showed that the labeled donor PGCs had migrated into the germinal ridges of the recipient embryos, and transplanted PGCs had undergone at least 3-7 divisions. These results suggest that PGCs that had passed far beyond the migration stage in vivo were still able to migrate, colonize and proliferate in recipient chick embryonic gonads.  相似文献   

15.
PURPOSE OF REVIEW: Atherosclerosis is a chronic inflammatory disease that is the primary cause of morbidity and mortality in the developed world. Many studies have shown that macrophages and T-cells play critical roles in multiple aspects of the pathogenesis of the disease. Given that these cells are ultimately derived from bone marrow precursors, the concept of performing gene therapy for atherosclerosis through the retroviral transduction of hematopoietic stem cells has received much attention. This review will highlight recent advances that will help bring this goal closer. RECENT FINDINGS: The clinical application of retroviral gene transfer into hematopoietic stem cells has been hampered, in part, by the absence of vectors that can direct long-lasting, cell-type specific gene expression. In this review we will detail recent developments in the design of novel retroviral and lentiviral vectors that appear to overcome these problems, offering approaches to express therapeutic genes in specific cell-types within atherosclerotic lesions. We will also highlight advances in our understanding of the pathogenesis of atherosclerosis that may offer new gene therapeutic targets. SUMMARY: The use of retroviral transduction of hematopoietic stem cells for treatment of patients with atherosclerosis still remains a long-term goal. However, the recent development of retroviral vectors capable of directing expression to specific cell types within the lesion will allow more targeted therapeutic strategies to be devised. In addition, these vectors will provide powerful experimental tools to further our understanding of the pathogenesis of the disease.  相似文献   

16.
胚胎干细胞诱导分化为雄性生殖细胞的研究进展   总被引:2,自引:0,他引:2  
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新及无限分化潜能,理论上可以分化为生殖细胞。目前,在人及鼠中已有体外诱导ES细胞分化为成熟精子的报道。系统阐述影响ES细胞分化为雄性生殖细胞的内源性及外源性因素,并结合国内外最新研究进展总结其诱导分化方法,展望应用前景,期望为从事相关研究的学者提供参考。  相似文献   

17.
18.
《Mutation research》1970,9(1):127-133
Male C57BL mice received local irradiation to the testes with an exposure of 600 R of X-rays. The irradiated mice were killed 60–600 days after treatment, the testes were removed and meiotic preparations made by an air-drying method. Most of the cells showed 20 bivalents (20II), but multivalent configurations were recorded in the spermatocytes from irradiated animals and from old control males.In the irradiated males, the percentage of spermatocytes with chromosome rearrangements increased from 8.4 after 60 days to 12.6 after 100 days. The yield of abnormal cells remained at that level from 100 days to 200 days and then decreased up to 450 days after irradiation. A small increase occurred after 500 and 600 days.  相似文献   

19.
To study self‐renewal, genetic modification, and differentiation of avian spermatogonial stem cells (SSCs), we isolated chicken SSCs from fetal testes on the 16th hatching day via enzyme digestion, and then cultured the SSCs over 2 months after purification in vitro. SSCs were identified by alkaline phosphatase staining and SSEA‐1 fluorescence. The EGFP gene was transfected into SSCs by three different methods: electroporation, liposome transfer and calcium acid phosphate precipitation. The transfection rate and cell survival rate using electroporation were higher than when using liposomes or calcium acid phosphate (20.52% vs. 9.75% and 5.61%; 69.86% vs. 65.00% and 51.16%, respectively). After selection with G418 for 8 days, the transgenic SSCs were transplanted into the testes of cocks treated with busulfan. Twenty‐five days after transplantation, the recipients' semen was light ivory in color, and the density of spermatozoa was 3.87 (×107/ml), with 4.25% expressing EGFP. By 85 days after transplantation, the number of spermatozoa increased to 32.7 (×107/ml) and the rate of EGFP expression was 16.25%. Frozen sections of the recipients' testes showed that transgenic SSCs were located on the basal membrane of the seminiferous tubules and differentiated into spermatogenic cells at different stages. The EGFP gene was successfully amplified from the DNA of all recipients' semen samples. Mol. Reprod. Dev. 77: 340–347, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Data reported in the literature up to 1985 on reciprocal translocation induction in male mouse germ cells by external gamma-ray doses ranging from 0.5 to 6.0 Gy delivered at fixed dose rates were analyzed. On the assumption of a non-threshold linear dose response, zero effect at zero dose, and a center of distribution lying on an approximately straight line, calculations were made of linear regression coefficients. These coefficients (b), as a function of the dose rate (P), were well fitted by two straight lines: b = (3.15 +/- 0.59 log P) X 10(-6) for dose rates from 0.01 to 0.1 mGy/min; and b = (7.52 +/- 3.86 log P) X 10(-6) for dose rates ranging from 0.06 to 1.2 X 10(3) mGy/min. The intersection point of these two lines determined the so-called threshold level of the dose rate, namely, 4.6 X 10(-2) mGy/min, at which the effectiveness of external gamma-irradiation is not expected to exceed 2.36 X 10(-6)/mGy. In addition, experiments were undertaken in which yields were recorded of reciprocal translocations in germ cells of male mice exposed to 0.9 Gy of gamma-radiation at dose rates ranging from 6.14 X 10(-3) to 6.14 X 10(2) mGy/min (6 levels); comparisons were made with data published up to 1985 from similar studies using other fixed doses. To do this, translocation yields were expressed as relative yields (F) and their relationship to the dose rate (P) for the individual fixed doses was represented by an equation of the type: F = alpha + beta log P. For most of the equations, the regression coefficients were in good agreement and a single relationship was obtained to represent them. From the analysis performed it follows that, within the 0.6-6.0 Gy dose range, the pattern of the F vs. P relationship is unaffected by the dose. This supports the initial assumption that for the dose range up to 6.0 Gy the dose response for the reciprocal translocation yield is a non-threshold straight-line relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号