首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Commercial acid-extracted sugar beet pectin was extensively hydrolysed using an endo-polygalacturonase (AnPGI from Aspergillus niger or AnPGII from A. niger or FmPG from Fusarium moniliforme) in combination with Aspergillus aculeatus pectin methyl-esterase (AaPME). The homogalacturonan-derived oligogalacturonates released were quantified by high-performance anion-exchange chromatography and their structure determined by mass spectrometry. The different endo-polygalacturonases exhibited variable tolerance towards acetyl groups. AnPGI was the most active and FmPG the less. A hypothetical homogalacturonan was constructed using the AnPGI-recovered oligogalacturonates as building blocks and the validity of the model was checked taking into account FmPG observed requirements and hydrolysis products. A blockwise repartition of the acetyl groups onto sugar beet pectin homogalacturonan is proposed.  相似文献   

2.
Endopolygalacturonase from Fusarium moniliforme was used to degrade acetylated homogalacturonan previously prepared from sugar beet pulp. The initial velocity and the final percentage of hydrolysis decreased very rapidly with increasing degree of acetylation, showing that acetyl substitution markedly affected the enzymatic activity. MALDI-TOF mass spectrometry was used to analyse the reaction products and to show acetyl groups on the oligogalacturonates. The results demonstrated that the enzyme was able to accommodate acetyl groups in its active site cleft. The influence of acetyl groups on the mode of action of the enzyme was discussed and compared to the influence of methyl groups.  相似文献   

3.
Pectic polysaccharides were extracted from sugar beet pulp to yield fractions representing homogalacturonans, rhamnogalacturonans, arabinans and relatively small amounts of glucomannans and xyloglucans. The homogalacturonans had an apparent molecular weight of 21 kDa and contained relatively high amounts of methyl esters and relatively low amounts of acetyl groups as compared with the ramified 'hairy' regions. Three populations which originated from the ramified 'hairy' regions of pectin were distinguished. Two of these were rhamnogalacturonans with high apparent molecular weights of 1300 and 120 kDa, respectively. These populations had a high Ara and ferulic acid content. Despite the high neutral sugar content, these rhamnogalacturonans strongly bound to a DEAE column. The third population which originated from the ramified 'hairy' regions was a neutral population, which did not interact with the DEAE column and had a low apparent molecular weight and a high Ara and ferulic acid content. The arabinan side-chains of the rhamnogalacturonans were heavily branched in all populations. Enzymatic degradation of the xyloglucans showed similarities with apple xyloglucans with respect to the substitution with Fuc and Gal.  相似文献   

4.
Rhamnogalacturonan acetylesterase, able to specifically hydrolyse the acetyl asters present in modified hairy (ramified) regions (MHR) of apple pectin, was identified. The enzyme removed about 70% of the total acetyl groups in MHR. This acetylesterase did not cause the release of acetyl groups from a range of other acetylated substrates, either synthetic or extracted from plants, including the acetylated smooth regions present in beet pectin. Pretreatment of pectic polysaccharides in order to remove arabinose side chains had no effect on the acetyl release, wor was an effect found on the rate or degree of acetyl release, when the purified acetylesterase was combined with pectolytic enzymes, pectin methylesterase or arabinanases. Correspondence to: A. G. J. Voragen  相似文献   

5.
Peracetylated samples of cyclomaltoheptaose (β-cyclodextrin, β-CD) and its methylated derivative were studied by 13C NMR. The acetyl carbonyl carbon signal in peracetylated β-CD was resolved into a triplet, and the three peaks were assigned by long-range C---H COSY and INAPT techniques. The individual carbonyl peak was found to be indicative of the location of the acetyl group on the 2, 3, and 6 position in the glucose residues. An acetylated derivative of a partly methylated β-CD was also subjected to 13C NMR analysis to determine the distribution of acetyl and, subsequently, methyl groups on the glucose residues.  相似文献   

6.
Evidence is presented for the presence of xylogalacturonan (XGA) in Arabidopsis thaliana. This evidence was obtained by extraction of pectin from the seeds, root, stem, young leaves and mature leaves of A. thaliana, followed by treatment of these pectin extracts with xylogalacturonan hydrolase (XGH). Upon enzymatic treatment, XGA oligosaccharides were primarily produced from pectin extracts obtained from the young and mature leaves and to a lesser extent from those originating from the stem of A. thaliana. The oligosaccharide GalA(3)Xyl was predominantly formed from these pectin extracts. No XGA oligosaccharides were detected in digests of pectin extracts from the seeds and roots. A low number of XGA oligosaccharides was obtained from pectins of A. thaliana. This indicates a uniform distribution of xylose in XGA from A. thaliana. The predominant production of GalA(3)Xyl, as well as the release of linear GalA oligosaccharides pointed to a lower degree of xylose substitution in XGA from A. thaliana than in XGA from apple and potato. The estimated amount of XGA accounted for approximately 2.5%, 7% and 6% (w/w) of the total carbohydrate in the pectin fraction of the stem, young leaves and mature leaves, respectively.  相似文献   

7.
Driselase-digestion of cell walls from suspension-cultures of spinach (Spinacia oleracea L.), followed by anion-exchange chromatography, gel-permeation chromatography, preparative paper chromatography and preparative paper electrophoresis, yielded ten uronic acid-containing products in addition to free galacturonic acid (GalA). These included 4-O-methylglucuronic acid, alpha-L-rhamnopyranosyl-(1-->4)-D-glucuronic acid and several oligosaccharides containing GalA residues. The structures were unambiguously determined by a combination of 1- and 2-dimensional NMR spectroscopic techniques. Five of the six homogalacturonan-derived oligosaccharides purified contained 3-O-acetyl-GalA residues; however, methyl-esterified GalA residues occurred adjacent to both 2-O-acetyl-GalA and 3-O-acetyl-GalA residues. An acetylated, rhamnogalacturonan-I-derived oligosaccharide that was purified also contained 3-O-acetyl-GalA residues. Taken together with published data, our findings indicate considerable diversity in the patterns of pectin esterification. The implications for the action of pectin esterases are discussed.  相似文献   

8.
Pectins were extracted from roots, petioles and leaves of sugar beet, and cross-linked using hydrogen peroxide and peroxidase. The effects on dehydrodiferulate formation were monitored by HPLC and TLC. Dehydrodimers were formed in different proportions to those found in vivo. There was a net loss of around 50% of the phenolic groups (monomers plus dimers) during dimerisation. Gel filtration showed that root and petiole pectin, but not leaf pectin, increased in molecular weight during cross-linking. The effects of varying the cross-linking conditions were investigated, and it was found that hydrogen peroxide concentration was the most important factor in controlling both the type and amount of dehydrodiferulate formed.  相似文献   

9.
Three ferulic acid esterases from the filamentous fungus Chrysosporium lucknowense C1 were purified and characterized. The enzymes were most active at neutral pH and temperatures up to 45 °C. All enzymes released ferulic acid and p-coumaric acid from a soluble corn fibre fraction. Ferulic acid esterases FaeA1 and FaeA2 could also release complex dehydrodiferulic acids and dehydrotriferulic acids from corn fibre oligomers, but released only 20% of all ferulic acid present in sugar beet pectin oligomers. Ferulic acid esterase FaeB2 released almost no complex ferulic acid oligomers from corn fibre oligomers, but 60% of all ferulic acid from sugar beet pectin oligomers. The ferulic acid esterases were classified based on both, sequence similarity and their activities toward synthetic substrates. The type A ferulic acid esterases FaeA1 and FaeA2 are the first members of the phylogenetic subfamily 5 to be biochemically characterized. Type B ferulic acid esterase FaeB2 is a member of subfamily 6.  相似文献   

10.

Background

Trichoderma reesei CE16 acetyl esterase (AcE) is a component of the plant cell wall degrading system of the fungus. The enzyme behaves as an exo-acting deacetylase removing acetyl groups from non-reducing end sugar residues.

Methods

In this work we demonstrate this exo-deacetylating activity on natural acetylated xylooligosaccharides using MALDI ToF MS.

Results

The combined action of GH10 xylanase and acetylxylan esterases (AcXEs) leads to formation of neutral and acidic xylooligosaccharides with a few resistant acetyl groups mainly at their non-reducing ends. We show here that these acetyl groups serve as targets for TrCE16 AcE. The most prominent target is the 3-O-acetyl group at the non-reducing terminal Xylp residues of linear neutral xylooligosaccharides or on aldouronic acids carrying MeGlcA at the non-reducing terminus. Deacetylation of the non-reducing end sugar may involve migration of acetyl groups to position 4, which also serves as substrate of the TrCE16 esterase.

Conclusion

Concerted action of CtGH10 xylanase, an AcXE and TrCE16 AcE resulted in close to complete deacetylation of neutral xylooligosaccharides, whereas substitution with MeGlcA prevents removal of acetyl groups from only a small fraction of the aldouronic acids. Experiments with diacetyl derivatives of methyl β-d-xylopyranoside confirmed that the best substrate of TrCE16 AcE is 3-O-acetylated Xylp residue followed by 4-O-acetylated Xylp residue with a free vicinal hydroxyl group.

General significance

This study shows that CE16 acetyl esterases are crucial enzymes to achieve complete deacetylation and, consequently, complete the saccharification of acetylated xylans by xylanases, which is an important task of current biotechnology.  相似文献   

11.
A series of pectins with different distribution patterns of methyl ester groups was produced by treatment with either plant (p-PME) or fungal pectin methyl esterases (f-PME) and compared with those obtained by base catalysed de-esterification. The products generated by digestion of these pectins with either endopectin lyase (PL) or endopolygalacturonase II (PG II) from Aspergillus niger were analysed using matrix assisted laser desorption ionisation mass spectrometry (MALDIMS) and high-performance anion-exchange chromatography with pulsed amperometric or UV detection (HPAEC-PAD/UV). Time course analysis using MALDIMS was used to identify the most preferred substrate for each enzyme. For PL, this was shown to be fully methyl esterified HG whereas for PG II, long regions of HG without any methyl esterification, as produced by p-PME was the optimal substrate. The blockwise de-esterification caused by p-PME treatment gave a decrease of partly methylated oligomers in PL fingerprints, which did not effect the relative composition of partly methylated oligomers. PG II fingerprints showed a constant increase of monomers and oligomers without any methyl ester groups with decreasing degree of esterification (DE), but almost no change in the concentration of partly methylated compounds. PL fingerprints of f-PME and chemically treated pectins showed decreasing amounts of partly methyl esterified oligomers with decreasing DE, together with a relative shift towards longer oligomers. PG II fingerprints were characterised by an increase of partly methylated and not methylated oligomers with decreasing DE. But differences were also seen between these two forms of homogenous de-esterification. Introduction of a certain pattern of methyl ester distribution caused by selective removal of certain methyl ester groups by f-PME is the most reasonable explanation for the detected differences.  相似文献   

12.
《Carbohydrate research》1986,154(1):189-203
Pectins sequentially extracted from sugar-beet pulp with water (WSP), oxalate (OXP), hot acid (HP), and cold alkali (OHP) have been degraded variously by base-catalysed β-elimination, de-esterification, endopectin lyase, pectin methyl esterase, endopolygalacturonase, and endopectate lyase. The products were studied mainly by chromatography on Sephadex G-100. The pectins contain various amounts of degradation-resistant (hairy) fragments in which the molar ratios of neutral sugar residues to galacturonic acid residues were 4.8, 4.6, 3.8, and 3.7 for WSP, OXP, HP, and OHP, respectively. The molar ratios of rhamnose residues to galacturonic acid residues in these fragments were 0.15, 0.20, 0.38 and 0.35, respectively. The pectins also contained sequences of galacturonic acid residues with relatively little neutral sugar residues attached (smooth fragments). Methyl ester and acetyl groups were distributed fairly regularly along the smooth fragments. Evidence is presented for an association of oligogalacturonic acids with the hairy fragments under the conditions of gel chromatography. Feruloyl groups are located in the hairy fragments. Other phenolic compounds, associated with the purified pectins, appear not to be covalently linked.  相似文献   

13.
Methods for obtaining neutral and acid oligosaccharides from flax pectins   总被引:1,自引:0,他引:1  
Esterified acid soluble pectins from flax (Linun usitatissimum L.) were degraded either with HCl or pectin lyase. Centrifugation and 2-propanol precipitation led to the isolation of two low molecular weight polygalacturonates after acid hydrolysis of pectins. However, after pectin lyase digestion and purification by size-exclusion HPLC, 1H NMR analyses indicated that acetylated hairy regions, large methylated and acetylated oligogalacturonides together with small unsubstituted oligogalacturonides were produced. Thus, in a few steps, a panel of substituted neutral and acidic oligosaccharides was produced from a raw plant material. Such oligosaccharides could be useful for further fractionations such as chemical saponification and enzymatic removal of neutral sugar chains from the hairy regions. The procedures used for pectin extraction, for degradation, and for the purification of fragments seem appropriate for large-scale production of biologically active oligosaccharides from flax.Revisions requested 24 September 2004; Revisions received 4 November 2004  相似文献   

14.
Endopolygalacturonases (EndoPGs) hydrolyse the 1-4 linkages between two alpha-d-galacturonic acids (GalA) of the smooth homogalacturonan regions of pectin. GalA may be methyl-esterified on the carboxylic group and acetyl-esterified on the hydroxylic groups. EndoPG activity most often decreases with such increasing degree of substitution. In this paper, we used bioinformatics and molecular modelling technics to explain the tolerance profile at the molecular scale and processivity scheme of three endoPGs with respect to acetylated pectin substrate; the first two enzymes originate from Aspergillus niger (AnPGI and AnPGII) and the third from Fusarium moniliforme (FmPG). Partly acetylated and methylated homogalacturonan fragments in complex with the three PGs were successively modelled in silico. The amino acid residues involved in substrate binding were identified for each enzyme. Similarly, the docking pattern of the differently decorated oligomers in the catalytic groove was individually characterized for each enzyme. This work shows full agreement with our previous extensive mass spectrometry analysis of the hydrolytic products that established distinct tolerance profiles for the three endoPGs and earlier work that ascertained processivity, specifically for AnPGI. In our previous work, AnPGI was shown to be the most powerful enzyme among the three enzymes with an enhanced tolerance towards O2- and O3-acetylated substrates. We report here amino acids of AnPGI that are unique in binding the pectin backbone and that are identified as possibly crucial for its specificity, namely S191(An)(PGI)/D240(An)(PGI). Similarly, topologically equivalent residues in AnPGII and FmPG were identified that could impede such binding; S234(An)(PGII)/S91(An)(PGII) and S245(Fm)(PG)/V89(Fm)(PG). In addition, we report here, from normal mode analysis computed on AnPG1, a shear bending motion of 15 A of amplitude that fully accredits the processive action pattern for this enzyme, with D240(An)(PGI) and R96(An)(PGI) working as crampons to favour the sliding of the substrate. Conversely, the same method clearly evidences a hinge binding motion for AnPGII and FmPG that should only authorize one hydrolytic event per enzyme/substrate encounter.  相似文献   

15.
A method was developed to selectively methyl esterify and then cleave GalA residues in pectic polysaccharides. The method was optimized using a rhamnogalacturonan (RG) from Arabidopsis mucilage as a model compound. The carboxyl group of the GalA residues in the RG was selectively methyl esterified using tetrabutylammonium fluoride and iodomethane in Me(2)SO containing 8% water. A 1D HMQC NMR method to determine the degree of methyl esterification was developed using (13)C-iodomethane as the methylating agent. The methyl-esterified pectins were fragmented by beta-elimination in 0.2M sodium borate, pH7.3, at 125 degrees C. The resulting oligoglycosyl fragments, which contain a nonreducing 4-deoxy-beta-l-threo-hex-4-enepyranosyluronic acid residue, were characterized using MALDI-TOF mass spectrometry, monosaccharide composition analysis, and 1D and 2D (1)H and (13)C NMR spectroscopy. Application of this method to branched RG from potato generated low-molecular-weight fragments containing two residues from the RG backbone and a single side chain. In contrast, the fragments obtained when RG is treated with RG lyase contain a minimum of four backbone residues. The chemical method thus facilitates the release and structural characterization of the side-chain structures of RG obtained from various plant sources. The method also provides a convenient method for generating fully or partially methyl-esterified homogalacturonans.  相似文献   

16.
A combination of xylogalacturonan (XGA), homogalacturonan, and rhamnogalacturonan was extracted from watermelon fruit cell walls with 0.1 M NaOH. In contrast to the resistance of xylogalacturonans from most other sources to endopolygalacturonase (EPG), about 50% of the extracted XGA could be converted into oligosaccharides by EPG digestion with a commercial EPG from Megazyme International. The oligosaccharides were fractionated by ion-exchange chromatography, and their structures were investigated by mass spectrometry and NMR spectroscopy. The smallest oligosaccharide was beta-D-Xylp-(1-->3)-alpha-D-GalAp-(1-->4)-alpha-D-GalAp-(1-->4)-alpha-D-GalAp-(1-->4)-GalAp. The most abundant was beta-D-Xylp-(1-->3)-alpha-D-GalAp-(1-->4)-alpha-D-GalAp-(1-->4)(beta-D-Xylp-(1-->3)-alpha-D-GalAp-(1-->4))-alpha-D-GalAp-(1-->4)-alpha-D-GalAp-(1-->4)-GalAp. Given that the nonreducing ends of the oligosaccharides often were xylosylated GalA residues, and that fungal EPG digests homogalacturonans between the third and fourth GalA bound to the enzyme, it appears that EPG can accommodate a xylosylated GalA in the site that binds the fourth GalA. Since all of the oligosaccharides characterized had three unsubstituted GalA residues at their reducing ends, the enzyme appears not to accommodate xylosylated residues in the first three sugar-binding sites. Thus, XGA regions with fewer than three unsubstituted residues between branch points will be resistant to EPG. The EPG-susceptible XGA was not recovered from cell walls prepared using phosphate buffer for the homogenization of the watermelon tissue, probably because it was degraded by endogenous watermelon EPG and lost during isolation of the walls. Use of Tris-buffered phenol during wall isolation to prevent enzyme action caused some amidation of GalA residues with Tris.  相似文献   

17.
Hop pectins were extracted from spent hops using acid extraction conditions and were characterized chemically. The acid extraction of spent hops resulted in a yield of 2%, containing 59% of polysaccharides. The hop pectins under investigation had a relatively high molecular weight and an intrinsic viscosity comparable to that of commercially available apple and citrus pectins. The low degree of methyl esterification of these pectins implicates that they are mainly suitable for use in calcium gels. The degree of acetylation and the neutral sugar content were relatively high.

A high molecular weight fraction which contained arabinogalactan-proteins was shown to be present in the hop pectin extract after preparative size-exclusion chromatography. Additionally, a fraction with a lower molecular weight was present containing mainly homogalacturonans. The arabinogalactans in the high molecular weight population consisted of (1→3)- and (1→3,6)-linked galactans highly branched with arabinose and galactose side-chains. The protein part of the arabinogalactan-protein (13%) was found to be rich in cystein, threonin, serinin, alanin, and hydroxyprolin. The molecular weight distribution of the hop pectin after degradation with the enzymes endopolygalacturonase plus pectin methyl esterase suggested that the arabinogalactan-protein present in the hop pectin extract was linked to the pectin and that the arabinogalactan-protein itself had a fairly low molecular weight.  相似文献   


18.
The mode of action of the endopolygalacturonase from Fusarium moniliforme was studied towards a series of pectins with different amounts and distribution patterns of methyl-ester groups. The enzyme hydrolysed the linkages between two galacturonic acid residues according to a multi-chain attack mechanism, at least at the early stage of the reaction. The final percentage of hydrolysis decreased with increasing the degree of methylation. The distribution pattern of the methyl groups affected the rate of hydrolysis as well as the final percentage of hydrolysis, a blockwise distribution being more favourable than a random one. The final products, as analysed by mass spectrometry, included methyl-esterified oligogalacturonates. The detailed analysis of the structure of the oligomers showed that the enzyme was able to accommodate methylated galacturonic acid in its active site, but that methyl-esterification negatively affected the affinity of the enzyme.  相似文献   

19.
The okra plant, Abelmoschus esculentus (L.) Moench, a native plant from Africa, is now cultivated in many other areas such as Asia, Africa, Middle East, and the southern states of the USA. Okra pods are used as vegetables and as traditional medicines. Sequential extraction showed that the Hot Buffer Soluble Solids (HBSS) extract of okra consists of highly branched rhamnogalacturonan (RG) I containing high levels of acetyl groups and short galactose side chains. In contrast, the CHelating agent Soluble Solids (CHSS) extract contained pectin with less RG I regions and slightly longer galactose side chains. Both pectic populations were incubated with homogeneous and well characterized rhamnogalacturonan hydrolase (RGH), endo-polygalacturonase (PG), and endo-galactanase (endo-Gal), monitoring both high and low molecular weight fragments. RGH is able to degrade saponified HBSS and, to some extent, also non-saponified HBSS, while PG and endo-Gal are hardly able to degrade either HBSS or saponified HBSS. In contrast, PG is successful in degrading CHSS, while RGH and endo-Gal are hardly able to degrade the CHSS structure. These results point to a much higher homogalacturonan (HG) ratio for CHSS when compared to HBSS. In addition, the CHSS contained slightly longer galactan side chains within its RG I region than HBSS. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated the presence of acetylated RG oligomers in the HBSS and CHSS enzyme digests and electron spray ionization-ion trap-mass spectrum showed that not only galacturonosyl residues but also rhamnosyl residues in RG I oligomers were O-acetylated. NMR spectroscopy showed that all rhamnose residues in a 20 kDa HBSS population were O-acetylated at position O-3. Surprisingly, the NMR data also showed that terminal α-linked galactosyl groups were present as neutral side chain substituents. Taken together, these results demonstrate that okra contained RG I structures which have not been reported before for pectic RG I.  相似文献   

20.
The main virus-specific messenger RNA species of Sindbis virus-infected hamster cells, the “26S” RNA, has been examined with regard to methylation status. Internal methylated residues and terminal methylated residues were present, in approximately equal amounts. The internal methyl groups were almost all in 5-methylcytosine residues and the terminal methyl groups were mainly in 7-methylguanine residues. Evidence is presented that these latter occur in “capped” 5′-termini with the novel structure m7G(5′)pppNp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号