共查询到20条相似文献,搜索用时 15 毫秒
1.
Morandi S Ristori S Berti D Panza L Becciolini A Martini G 《Biochimica et biophysica acta》2004,1664(1):53-63
The possibility of cationic (di-oleoyltrimethylammonium propane, DOTAP)/(L-alpha-dioleoylphosphatidyl-ethanolamine, DOPE) liposomes to act as carriers of boronated compounds such as 1,2-dicarba-closo-dodecaboran(12)-1-ylmethyl](beta-D-galactopyranosyl)-(1-->4)-beta-D-glucopyranoside and 1,2-di-(beta-D-gluco-pyranosyl-ox)methyl-1,2-dicarba-closo-dodeca-borane(12) has been investigated by Electron Spin Resonance (ESR) of n-doxyl stearic acids (n-DSA) and Quasi-Elastic Light Scattering (QELS). Both these carboranes have potential use in Boron Neutron Capture Therapy (BNCT), which is a targeted therapy for the treatment of radiation resistant tumors. They were shown to give aggregation both in plain water and in saline solution. Carborane aggregates were, however, disrupted when DOTAP/DOPE liposome solutions were used as dispersing agents. The computer analysis of the ESR spectra from carborane-loaded liposomes allowed to establish an increase of the order degree in the liposome bilayer with increasing carborane concentration, together with a decreased mobility. The same discontinuities of both correlation time and order parameter with respect to temperature variations were observed in carborane-containing and carborane-free liposomes. This suggested that a homogeneous dispersion of nitroxides and carboranes occurred in the liposome bilayer. The ESR line shape analysis proved that no dramatic changes were induced in the liposome environment by carborane insertion. QELS data showed that the overall liposome structure was preserved, with a slight decrease in the mean hydrodynamic radius and increase in polydispersity caused by the guest molecules. 相似文献
2.
The possibility of cationic (di-oleoyltrimethylammonium propane, DOTAP)/(l-α-dioleoylphosphatidyl-ethanolamine, DOPE) liposomes to act as carriers of boronated compounds such as 1,2-dicarba-closo-dodecaboran(12)-1-ylmethyl](β-d-galactopyranosyl)-(1→4)-β-d-glucopyranoside and 1,2-di-(β-d-gluco-pyranosyl-ox)methyl-1,2-dicarba-closo-dodeca-borane(12) has been investigated by Electron Spin Resonance (ESR) of n-doxyl stearic acids (n-DSA) and Quasi-Elastic Light Scattering (QELS). Both these carboranes have potential use in Boron Neutron Capture Therapy (BNCT), which is a targeted therapy for the treatment of radiation resistant tumors. They were shown to give aggregation both in plain water and in saline solution. Carborane aggregates were, however, disrupted when DOTAP/DOPE liposome solutions were used as dispersing agents. The computer analysis of the ESR spectra from carborane-loaded liposomes allowed to establish an increase of the order degree in the liposome bilayer with increasing carborane concentration, together with a decreased mobility. The same discontinuities of both correlation time and order parameter with respect to temperature variations were observed in carborane-containing and carborane-free liposomes. This suggested that a homogeneous dispersion of nitroxides and carboranes occurred in the liposome bilayer. The ESR line shape analysis proved that no dramatic changes were induced in the liposome environment by carborane insertion. QELS data showed that the overall liposome structure was preserved, with a slight decrease in the mean hydrodynamic radius and increase in polydispersity caused by the guest molecules. 相似文献
3.
AbstractFirst, the SA-TDZA-Lips were prepared by reverse-phase evaporation method. Then, the drug release behaviour was evaluated by dynamic membrane dialysis in vitro and the preliminary safety was evaluated by haemolysis method. Finally, with tedizolid phosphate injection (TDZA-Inj) and tedizolid phosphate loaded liposomes (TDZA-Lips) as the control groups, the pharmacokinetic characteristic and tissues distribution of SA-TDZA-Lips were evaluated after intravenous injection. As a result, the stearylamine modified tedizolid phosphate liposomal delivery system was constructed successfully and the particle size was 194.9?±?2.93?nm. The encapsulation efficiency (EE) was 53.52?±?2.18%. The in vitro release of SA-TDZA-Lips was in accordance with Weibull equation. And there was no haemolysis happened, which indicated good preliminary safety for injection. The results of pharmacokinetics showed that the t1/2β increased by 0.74 times and 0.51 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The MRT of SA-TDZA-Lips was 1.30 and 1.09 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The AUC was 2.40 times and 0.23 times higher than that of TDZA-Inj group and TDZA-Lips group, respectively. The tissue distribution results showed that the relative uptake rate (Re) of TDZA in the lung was 1.527, which indicated the targeting. In conclusion, the SA-TDZA-Lips prepared in this study had several advantages like positive charge, strong cell affinity, prolonged circulation time in vivo, sustained release effect, and increased drug concentration in lungs. All advantages above provided significant clinical value of application for the treatment of bacterial pneumonia with tedizolid phosphate. 相似文献
4.
The increasing use of cationic liposomes as vectors for DNA transfection of eukaryotic cells is due to its high efficiency and reproducibility. After the interaction of the DNA cationic-liposome complexes (DNA-CLC) with the plasma membrane, the entry into the cells delivers the DNA-CLC to the endosome-lysosome pathway where some of the DNA-CLC are degraded. The non-degraded DNA that escapes to the cytoplasm, still has to transverse the nuclear membrane to be transcribed and then translated. To improve the efficiency of the whole process, we can manipulate the DNA (sequences, promoters, enhancers, nuclear localisation signals, etc), the DNA-CLC (lipids) or the plasmatic, endosomal and/or nuclear cellular membranes (ultrasound, electroporation, Ca++, pH of the endosomes, mitosis, fusogenic peptides, nuclear localisation signals, etc). Most of these methods have been generally used individually but in combination, may greatly improve the efficiency and reproducibility of in vitro transfection. While much of this work remains yet to be done and present results further explored, the application of these efforts is essential to the future development of new gene therapy strategies. 相似文献
5.
Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature
Suman Dandamudi 《生物化学与生物物理学报:生物膜》2007,1768(3):427-438
Cationic liposomes preferentially target tumor vasculature compared to vessels in normal tissues. The distribution of cationic liposomes along vascular networks is, however, patchy and heterogeneous. To target vessels more uniformly we combined the electrostatic properties of cationic liposomes with the strength of an external magnet. We report part I of development. We evaluated bilayer physical properties of our preparations. We investigated interaction of liposomes with target cells including the role of PEG (polyethylene-glycol), and determined whether magnetic cationic liposomes can respond to an external magnetic field. The inclusion of relatively high concentration of MAG-C (magnetite) at 2.5 mg/ml significantly increased the size of cationic liposomes from 105 ± 26.64 to 267 ± 27.43 nm and reduced the zeta potential from 64.55 ± 16.68 to 39.82 ± 5.26 mv. The phase transition temperature of cationic liposomes (49.97 ± 1.34 °C) reduced with inclusion of MAG-C (46.05 ± 0.21 °C). MAG-C cationic liposomes were internalized by melanoma (B16-F10 and HTB-72) and dermal endothelial (HMVEC-d) cells. PEG partially shielded cationic charge potential of MAG-C cationic liposomes, reduced their ability to interact with target cells in vitro, and uptake by major RES organs. Finally, application of external magnet enhanced tumor retention of magnetic cationic liposomes. 相似文献
6.
Development and characterization of magnetic cationic liposomes for targeting tumor microvasculature
Cationic liposomes preferentially target tumor vasculature compared to vessels in normal tissues. The distribution of cationic liposomes along vascular networks is, however, patchy and heterogeneous. To target vessels more uniformly we combined the electrostatic properties of cationic liposomes with the strength of an external magnet. We report part I of development. We evaluated bilayer physical properties of our preparations. We investigated interaction of liposomes with target cells including the role of PEG (polyethylene-glycol), and determined whether magnetic cationic liposomes can respond to an external magnetic field. The inclusion of relatively high concentration of MAG-C (magnetite) at 2.5 mg/ml significantly increased the size of cationic liposomes from 105+/-26.64 to 267+/-27.43 nm and reduced the zeta potential from 64.55+/-16.68 to 39.82+/-5.26 mv. The phase transition temperature of cationic liposomes (49.97+/-1.34 degrees C) reduced with inclusion of MAG-C (46.05+/-0.21 degrees C). MAG-C cationic liposomes were internalized by melanoma (B16-F10 and HTB-72) and dermal endothelial (HMVEC-d) cells. PEG partially shielded cationic charge potential of MAG-C cationic liposomes, reduced their ability to interact with target cells in vitro, and uptake by major RES organs. Finally, application of external magnet enhanced tumor retention of magnetic cationic liposomes. 相似文献
7.
Jean-François Labbé René C.-Gaudreault Michèle Auger 《Chemistry and physics of lipids》2009,158(2):91-276
Gene and synthetic drug-delivery vectors have been developed and characterized to treat several genetic diseases and cancers. Our study aims at characterizing cationic liposomes containing the zwitterionic phospholipid DMPC and the cationic lipid DOTAP as well as their interactions with two types of DNA and a new class of antineoplastic agents derived from arylchloroethylureas (CEU). Results obtained using FTIR spectroscopy as well as 31P and 2H NMR indicate that DMPC and DOTAP form cationic liposomes in a highly disordered fluid phase at a molar ratio of 1:1. In addition, the FTIR results indicate that the presence of DNA or CEUs within the liposomes does not significantly affect the conformational order of both the DMPC and DOTAP acyl chains. Our results therefore provide a detailed characterization of complexes between cationic liposomes and both DNA and drugs and indicate that these complexes are stable and fluid assemblies. 相似文献
8.
Physico-chemical characterization and transfection efficacy of cationic liposomes containing the pEGFP plasmid 总被引:2,自引:0,他引:2
Cationic liposomes-DNA complexes (lipoplexes) are largely used in gene delivery. Deciphering specific chemical and physical properties of lipoplexes is a necessary step to unravel the mechanisms underlying transfection and to improve transfection efficacy in each experimental model. In the present paper we investigated the physico-chemical features of lipoplexes containing a plasmid encoding for the GFP protein, in order to correlate these results with transfection efficacy. Cationic unilamellar vesicles (mean diameter 100 nm) were prepared, from the cationic DC-Chol lipid and the zwitterionic phospholipid DOPE. The two components of the liposome bilayer were used at molar ratio close to unity. ESR spectra were recorded and zeta potential zeta was measured on liposomes complexed with the plasmid. One of the main points of interest in this paper resided in the fact that both kinds of measurements were carried out in the same conditions (i.e. lipid concentration, medium composition, and pH) employed for cell transfection experiments. Transfection was performed on CHO cells; the percentage of fluorescent cells was evaluated and compared with the above physico-chemical features. It emerged that the composition and pH of the medium, the lipoplex/cell ratio, as well as the amount of lipoplex added to the cell culture were critical parameters for transfection efficacy. Finally, lipoplex surface charge played a fundamental role to achieve a high transfection level. 相似文献
9.
Desmopressin-containing liposome formulations have been developed for intranasal administration previously. Positively charged liposomes were found to be an efficient delivery system for desmopressin. In this study, stability of the loaded desmopressin in positively charged liposomes was further investigated. Comparison of the stability of desmopressin in solution and liposomes was made. Degradation of desmopressin was shown to follow a pseudo-first-order reaction. Degradation of desmopressin in both solution and liposomes demonstrated the same kinetic behavior and exhibited no significant difference in half-lives. Similar v-shape pH-rate profile was found for desmopressin degradation in solution and liposomes. At pH 4.0, the inflection point of the v-shape pH-rate curve, the reaction rate of desmopressin was lowest and the stability was greatest. The stability of lipid ingredients of dioleoylphosphatidylcholine (DOPC), cholesterol (C), and stearylamine (S) in the liposome dispersion at pH 4.0 was studied. Results demonstrated that DOPC, C, and S were relatively stable in the liposome structure when formulated with desmopressin. The degradation of desmopressin in solution and liposomes in the presence of alpha-chymotrypsin was investigated. A longer half-life for desmopressin in liposomes than in solution was observed. It was suggested that desmopressin was protected by the liposomes against alpha-chymotrypsin digestion. 相似文献
10.
11.
Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA. 总被引:1,自引:0,他引:1
下载免费PDF全文

The structural and fusogenic properties of large unilamellar vesicles (LUVs) composed of the cationic lipid N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dioleoyl-3-phosphatidylethanotamine (DOPE) have been examined in the presence of pCMV5 plasmid and correlated with transfection potency. It is shown, employing lipid mixing fusion assays, that pCMV5 plasmid strongly promotes fusion between DOTMA/DOPE (1:1) LUVs and DOTMA/1,2-dioleoyl-3-phosphatidylcholine (DOTMA/DOPC) (1:1) LUVs such that at a cationic lipid-to-DNA charge ratio of 3.0, approximately 80% fusion is observed. The anions citrate and chloride can also trigger fusion, but at much higher concentrations. Freeze-fracture electron microscopy studies demonstrate the tendency of cationic vesicles to form clusters at low pCMV5 content, whereas macroscopic fused aggregates can be observed at higher plasmid levels. 31P NMR studies of the fused DNA-DOTMA/DOPE (1:1) complexes obtained at high plasmid levels (charge ratio 1.0) reveal narrow "isotropic" 31P NMR resonances, whereas the corresponding DOPC containing systems exhibit much broader "bilayer" 31P NMR spectra. In agreement with previous studies, the transfection potency of the DOPE-containing systems is dramatically higher than for the DOPC-containing complexes, indicating a correlation between transfection potential and the motional properties of endogenous lipids. Interestingly, it was found that the complexes could be separated by centrifugation into a pellet fraction, which exhibits superior transfection potencies, and a supernatant fraction. Again, the pellet fraction in the DOPE-containing system exhibits a significantly narrower 31P NMR resonance than the corresponding DOPC-containing system. It is suggested that the 31P NMR characteristics of complexes exhibiting higher transfection potencies are consistent with the presence of nonbilayer lipid structures, which may play a direct role in the fusion or membrane destabilization events vital to transfection. 相似文献
12.
N. Apiratikul T. Penglong K. Suksen S. Svasti A. Chairoungdua B. Yingyongnarongkul 《Russian Journal of Bioorganic Chemistry》2013,39(4):444-450
A new cholesterol-based cationic lipid was synthesized; liposomes prepared on its basis were evaluated as drug delivery vehicles for curcumin. Free and liposome-encapsulated curcumin cytotoxicity against HeLa, A549, HepG2, K562 and 1301 cell lines was assessed. Liposomal curcumin with ED50 values ranging from 2.5–10 μM exhibited 2–8 times higher cytotoxicity than free curcumin. The synthetic cholesterol-based cationic lipid also enhanced cellular uptake of curcumin into tested cells. Cationic liposome alone showed low cytotoxicity at high doses with ED50 values of 90–210 μM. 相似文献
13.
《Journal of liposome research》2013,23(4):981-995
AbstractIn this study we prepared and characterized monoclonal antibody associated cationic liposomes (immunoliposomes) to be used as a vehicle for human gene therapy of malignant glioma. This association method is especially amenable to mass production. The immunoliposomes consist of N-(a-trimethylammonio-acetyl)-didodecyl-D-glutamate chloride (TMAG), dilauroyl phosphatidylcholine (DLPC), and dioleoyl phosphatidyl- ethanolamine (DOPE) in a molar ratio of 1:2:2 as TMAG:DLPC:DOPE. Their preparation required only the addition of a solution containing plasmid DNA and a monoclonal antibody against glioma-associated antigen to a lipid film of the above three lipids. The association of antibody on the surface of immunoliposomes was confirmed by an immunochemical procedure. Liposome-mediated LacZ gene transfection of human glioma cells resulted in p-galactosidase activity about 2- to 3-fold higher when immunoliposomes were used as compared to control liposomes that were not associated to antibody. Also, the production of human (3-interferon (HuIFN-P) into the medium was 2- to 7-fold higher when HuIFN-P gene was transfected. Based on the present results, the immunoliposomes associating a monoclonal antibody against glioma-associated antigen may become effective carriers for gene transfer to human glioma cells. 相似文献
14.
Bose S Tuunainen I Parry M Medina OP Mancini G Kinnunen PK 《Analytical biochemistry》2004,331(2):385-394
One of the most prominent hallmarks of apoptotic cells is the altered characteristics of their plasma membrane, with its blebbing and exposure of the anionic phospholipid, phosphatidylserine (PS), in the outer leaflet of the lipid bilayer. The latter feature provides the basis of distinguishing apoptotic cells from most normal cells due to staining with fluorescently labeled annexin V, binding specifically to PS. In this article, we report on the binding to apoptotic leukemic T cells (Jurkat cell line, treated with different apoptotic inducers) of cationic liposomes (CLs) composed of the cationic gemini surfactant SS-1 ((2S,3S)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide), the fluorescent lipid analog DOPRho (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). Control cells showed negligible and irregular binding patterns of CLs, whereas apoptotic cells revealed a strongly augmented staining of their plasma membrane. Morphological observations and comparison with standard procedures for detecting apoptotic cells further demonstrated the binding of CLs to be intense for cells undergoing apoptosis. In addition, some apoptotic cells with higher caspase-3 activity also revealed more pronounced staining by CLs. Our data suggest that the binding of CLs to apoptotic cells is mediated through an electrostatic interaction between the positively charged head group of SS-1 and the translocated anionic phospholipid PS in the plasma membrane. Because the fluorescent lipid tracer can be freely selected, this approach provides convenient and versatile means for the fluorescence detection of apoptotic cells. 相似文献
15.
Dileep P. Vangasseri Zhengrong Cui Weihsu Chen David A. Hokey Louis D. Falo Jr 《Molecular membrane biology》2013,30(5):385-395
A nano-aggregate liposome-polycation-DNA (LPD), composed of a cationic lipid, protamine and plasmid DNA was found to effectively deliver a human papillomavirus (HPV)-E7 epitope antigen to the antigen presenting cells of the immune system, eliciting enhanced anti-tumor immune responses in mouse models of cervical carcinoma. Both the cationic liposome and plasmid DNA were essential for the full immunostimulation activity of LPD. Interestingly, cationic liposomes alone could stimulate the antigen presenting dendritic cells (DC) leading to the expression of co-stimulatory molecules, CD80 and CD86. However, cationic lipids could not stimulate DC for the expression of pro-inflammatory cytokines. Moreover, they were unable to enhance the expression of NF-κB, suggesting that dendritic cells stimulation by cationic lipids is signaled through an NF-κB independent mechanism. DC stimulation was specific to cationic lipids, the zwitterionic and anionic lipids showed little or no activity. The ability of different cationic lipids to stimulate the expression of co-stimulatory molecules on DC varied significantly. In general, the cationic lipids bearing ethyl phosphocholine head groups were better stimulants than their trimethylammonium counterparts. In case of the cationic lipids bearing trimethyl ammonium head groups, the ones bearing unsaturated or shorter saturated hydrophobic chains exhibited enhanced immunostimulatory activity. The LPS-induced TNF-α expression by dendritic cells was inhibited by active cationic lipids but not the inactive ones, suggesting the possible involvement of lipopolysaccharide binding protein (LBP) in cationic lipid mediated DC stimulation. Based on the structure-specific activation of dendritic cells by cationic lipids, a model for the immunostimulation of DC by such lipids is proposed. 相似文献
16.
A nano-aggregate liposome-polycation-DNA (LPD), composed of a cationic lipid, protamine and plasmid DNA was found to effectively deliver a human papillomavirus (HPV)-E7 epitope antigen to the antigen presenting cells of the immune system, eliciting enhanced anti-tumor immune responses in mouse models of cervical carcinoma. Both the cationic liposome and plasmid DNA were essential for the full immunostimulation activity of LPD. Interestingly, cationic liposomes alone could stimulate the antigen presenting dendritic cells (DC) leading to the expression of co-stimulatory molecules, CD80 and CD86. However, cationic lipids could not stimulate DC for the expression of pro-inflammatory cytokines. Moreover, they were unable to enhance the expression of NF-kappaB, suggesting that dendritic cells stimulation by cationic lipids is signaled through an NF-kappaB independent mechanism. DC stimulation was specific to cationic lipids, the zwitterionic and anionic lipids showed little or no activity. The ability of different cationic lipids to stimulate the expression of co-stimulatory molecules on DC varied significantly. In general, the cationic lipids bearing ethyl phosphocholine head groups were better stimulants than their trimethylammonium counterparts. In case of the cationic lipids bearing trimethyl ammonium head groups, the ones bearing unsaturated or shorter saturated hydrophobic chains exhibited enhanced immunostimulatory activity. The LPS-induced TNF-alpha expression by dendritic cells was inhibited by active cationic lipids but not the inactive ones, suggesting the possible involvement of lipopolysaccharide binding protein (LBP) in cationic lipid mediated DC stimulation. Based on the structure-specific activation of dendritic cells by cationic lipids, a model for the immunostimulation of DC by such lipids is proposed. 相似文献
17.
Grabielle-Madelmont C Lesieur S Ollivon M 《Journal of biochemical and biophysical methods》2003,56(1-3):189-217
This review focuses on the use of conventional (SEC) and high performance (HPSEC) size exclusion chromatography for the analysis of liposomes. The suitability of both techniques is examined regarding the field of liposome applications. The potentiality of conventional SEC is strongly improved by using a HPLC system associated to gel columns with a size selectivity range allowing liposome characterization in addition to particle fractionation. Practical aspects of size exclusion chromatography are described and a methodology based on HPSEC coupled to multidetection modes for on-line analysis of liposomes via label or substance encapsulation is presented. Examples of conventional SEC and HPSEC applications are described which concern polydispersity, size and encapsulation stability, bilayer permeabilization, liposome formation and reconstitution, incorporation of amphiphilic molecules. Size exclusion chromatography is a simple and powerful technique for investigation of encapsulation, insertion/interaction of substances from small solutes (ions, surfactants, drugs, etc.) up to large molecules (proteins, peptides and nucleic acids) in liposomes. 相似文献
18.
Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes 总被引:7,自引:0,他引:7
下载免费PDF全文

Maurer N Wong KF Stark H Louie L McIntosh D Wong T Scherrer P Semple SC Cullis PR 《Biophysical journal》2001,80(5):2310-2326
This study describes the effect of ethanol and the presence of poly(ethylene) glycol (PEG) lipids on the interaction of nucleotide-based polyelectrolytes with cationic liposomes. It is shown that preformed large unilamellar vesicles (LUVs) containing a cationic lipid and a PEG coating can be induced to entrap polynucleotides such as antisense oligonucleotides and plasmid DNA in the presence of ethanol. The interaction of the cationic liposomes with the polynucleotides leads to the formation of multilamellar liposomes ranging in size from 70 to 120 nm, only slightly bigger than the parent LUVs from which they originated. The degree of lamellarity as well as the size and polydispersity of the liposomes formed increases with increasing polynucleotide-to-lipid ratio. A direct correlation between the entrapment efficiency and the membrane-destabilizing effect of ethanol was observed. Although the morphology of the liposomes is still preserved at the ethanol concentrations used for entrapment (25-40%, v/v), entrapped low-molecular-weight solutes leak rapidly. In addition, lipids can flip-flop across the membrane and exchange rapidly between liposomes. Furthermore, there are indications that the interaction of the polynucleotides with the cationic liposomes in ethanol leads to formation of polynucleotide-cationic lipid domains, which act as adhesion points between liposomes. It is suggested that the spreading of this contact area leads to expulsion of PEG-ceramide and triggers processes that result in the formation of multilamellar systems with internalized polynucleotides. The high entrapment efficiencies achieved at high polyelectrolyte-to-lipid ratios and the small size and neutral character of these novel liposomal systems are of utility for liposomal delivery of macromolecular drugs. 相似文献
19.
The effects of liposomes on apoptosis in macrophages were evaluated from DNA content and DNA fragmentation. Cationic liposomes composed of different kinds of cationic lipids induced apoptosis in mouse splenic macrophages and the macrophage-like cell line, RAW264.7 cells. Generation of reactive oxygen radicals from macrophages treated with cationic liposomes was detected using flow cytometry, and further apoptosis was inhibited by the addition of oxidant scavenger, N-acetylcysteine. From these findings, the production of reactive oxygen species may be important in the regulation of apoptosis induced by cationic liposomes. 相似文献
20.
To obtain cationic liposomes of which affinity to negatively charged membranes can be controlled by temperature, cationic liposomes consisting of 3beta-[N-(N', N'-dimethylaminoethane)carbamoyl]cholesterol and dioleoylphosphatidylethanolamine were modified with poly(N-acryloylpyrrolidine), which is a thermosensitive polymer exhibiting a lower critical solution temperature (LCST) at ca. 52 degrees C. The unmodified cationic liposomes did not change its zeta potential between 20-60 degrees C. The polymer-modified cationic liposomes revealed much lower zeta potential values below the LCST of the polymer than the unmodified cationic liposomes. However, their zeta potential increased significantly above this temperature. The unmodified cationic liposomes formed aggregates and fused intensively with anionic liposomes consisting of egg yolk phosphatidylcholine and phosphatidic acid in the region of 20-60 degrees C, due to the electrostatic interaction. In contrast, aggregation and fusion of the polymer-modified cationic liposomes with the anionic liposomes were strongly suppressed below the LCST. However, these interactions were enhanced remarkably above the LCST. In addition, the polymer-modified cationic liposomes did not cause leakage of calcein from the anionic liposomes below the LCST, but promoted the leakage above this temperature as the unmodified cationic liposomes did. Temperature-induced conformational change of the polymer chains from a hydrated coil to a dehydrated globule might affect the affinity of the polymer-modified cationic liposomes to the anionic liposomes. 相似文献