首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liposomes have been a main focus of tumor-selective boron delivery strategies in boron neutron capture therapy (BNCT), a binary method for the treatment of cancer that is based on the nuclear reaction between boron atoms and low-energy thermal neutrons. Three novel carboranyl cholesterol derivatives were prepared as lipid bilayer components for the construction of nontargeted and receptor-targeted boronated liposomes for BNCT. A major structural feature of these novel boronated cholesterol mimics is the replacement of the B and the C ring of cholesterol with a carborane cluster. Computational analyses indicated that all three boronated compounds have structural features and physicochemical properties that are very similar to those of cholesterol. One of the synthesized boronated cholesterol mimics was stably incorporated into non-, folate receptor (FR)-, and vascular endothelial growth factor receptor-2 (VEGFR-2)-targeted liposomes. No major differences were found in appearance, size distribution, and lamellarity between conventional dipalmitoylphosphatidylcholine (DPPC)/cholesterol liposomes, nontargeted, and FR-targeted liposomal formulations of this carboranyl cholesterol derivative. FR-targeted boronated liposomes were taken up extensively in FR overexpressing KB cells in vitro, and the uptake was effectively blocked in the presence of free folate. In contrast, a boronated cholesterol mimic incorporated into nontargeted liposomes showed significantly lower cellular uptake. There was no apparent in vitro cytotoxicity in FR overexpressing KB cells and VEGFR-2 overexpressing 293/KDR cells when these were incubated with boronated FR- and (VEGFR-2)-targeted liposomes, respectively, although the former accumulated extensively in KB cells and the latter effectively interacted with VEGFR-2 by causing autophosphorylation and protecting 293/KDR cells from SLT (Shiga-like toxin)-VEGF cytotoxicity.  相似文献   

2.
The objective of the present study was to construct epidermal growth factor receptor (EGFR) targeting cetuximab-immunoliposomes (ILs) for targeted delivery of boron compounds to EGFR(+) glioma cells for neutron capture therapy. The ILs were synthesized by using a novel cholesterol-based membrane anchor, maleimido-PEG-cholesterol (Mal-PEG-Chol), to incorporate cetuximab into liposomes by either surface conjugation or a post-insertion method. For post-insertion, the transfer efficiency of MAb conjugates from micelles to liposome was examined at varying temperatures, mPEG2000-DSPE ratios, and micelle-to-liposome lipid ratios. Following this, the cetuximab-ILs were evaluated for targeted delivery of the encapsulated boron anion, dodecahydro-closo-dodecaborate (2-) (B12H122-), to human EGFR gene transfected F98EGFR glioma cells as potential delivery agents for boron neutron capture therapy (BNCT). In addition, cellular uptake of cetuximab-ILs, encapsulating a fluorescence dye, was analyzed by confocal fluorescence microscopy and flow cytometry, and boron content was quantified by ICP-MS. Much greater ( approximately 8-fold) cellular uptake of boron was obtained using cetuximab-ILs in EGFR(+) F98EGFR compared with nontargeted human IgG-ILs. On the basis of these observations, we have concluded that cholesterol can serve as an effective anchor for MAb in liposomes, and cetuximab-ILs are potentially useful delivery vehicles for BNCT of gliomas.  相似文献   

3.
High accumulation and selective delivery of boron into tumor tissues are the most important requirements to achieve efficient neutron capture therapy of cancers. We focused on liposomal boron delivery system to achieve a large amount of boron delivery to tumor. We succeeded in the synthesis of the double-tailed boron cluster lipids 4a–c and 5a–c, which has a B12H11S-moiety as a hydrophilic function, by S-alkylation of B12H11SH with bromoacetyl and chloroacetocarbamate derivatives of diacylglycerols. Size distribution of liposomes prepared from the boron cluster lipid 4b, dimyristoylphosphatidylcholine, polyethyleneglycol-conjugated distearoylphosphatidylethanolamine, and cholesterol was determined as 100 nm in diameter by an electrophoretic light scattering spectrophotometer. Calcein-encapsulation experiments revealed that these boronated liposomes are stable at 37 °C in fetal bovine serum solution for 24 h.  相似文献   

4.
5.
A Monte Carlo simulation study has been carried out to investigate the suitability of neutron beams of various energies for therapeutic efficacy in boron neutron capture therapy. The dosimetric properties of unidirectional, monoenergetic neutron beams of varying diameters in two different phantoms (a right-circular cylinder and an ellipsoid) made of brain-equivalent material were examined. The source diameter was varied from 0.0 to 20.0 cm; neutron energies ranged from 0.025 eV up to 800 keV, the maximum neutron energy generated by a tandem cascade accelerator using 2.5-MeV protons in a 7Li(p,n)7Be reaction. Such a device is currently under investigation for use as a neutron source for boron neutron capture therapy. The simulation studies indicate that the maximum effective treatment depth (advantage depth) in the brain is 10.0 cm and is obtainable with a 10-keV neutron beam. A useful range of energies, defined as those neutron energies capable of effectively treating to a depth of 7 cm in brain tissue, is found to be 4.0 eV to 40.0 keV. Beam size is shown not to affect advantage depth as long as the entire phantom volume is used in determining this depth. Dose distribution in directions parallel to and perpendicular to the beam direction are shown to illustrate this phenomenon graphically as well as to illustrate the differences in advantage depth and advantage ratio and the contribution of individual dose components to tumor dose caused by the geometric differences in phantom shape.  相似文献   

6.
Boron neutron capture therapy (BNCT) depends on the selective delivery of a sufficient number of (10)B atoms to tumor cells to sustain a lethal (10)B(n,alpha)(7)Li reaction. Expression of FR frequently is amplified among human tumors. The goal of the present study was to investigate folate receptor (FR)-targeted liposomes as potential carriers for a series of boron-containing agents. Two highly ionized boron compounds, Na(2)[B(12)H(11)SH] and Na(3) (B(20)H(17)NH(3)), were incorporated into liposomes by passive loading with encapsulation efficiencies of 6% and 15%, respectively. In addition, five weakly basic boronated polyamines were investigated. Two were the spermidine derivatives: N(5)-(4-carboranylbutyl)spermidine.3HCl (SPD-5), N(5)-[4-(2-aminoethyl-o-carboranyl)butyl]spermidine.4HCl (ASPD-5). Three were the spermine derivatives: N(5)-(4-carboranylbutyl)spermine.4HCl (SPM-5), N(5)-[4-(2-aminoethyl-o-carboranyl)butyl]spermine.5HCl (ASPM-5), and N(5),N(10)-bis(4-carboranylbutyl)spermine.4 HCl (SPM-5,10). These were incorporated into liposomes by a pH-gradient-driven remote-loading method with varying loading efficiencies, which were influenced by the specific trapping agent and the structure of the boron compound. Greater loading efficiencies were obtained with lower molecular weight boron derivatives, using ammonium sulfate as the trapping agent, compared to those obtained with sodium citrate. The in vitro uptake of folate-derivatized, boronated liposomes was investigated using human KB squamous epithelial cancer cells, which have amplified FR expression. Higher cellular boron uptake (up to 1584 microg per 10(9) cells) was observed with FR-targeted liposomes than with nontargeted control liposomes (up to 154 microg per 10(9) cells), irrespective of the chemical form of the boron and the method used for liposomal preparation. KB cell binding of the FR-targeted liposomes was saturable and could be blocked by 1 mM free folic acid. Our findings suggest that further evaluation of FR-targeted liposomes is warranted to assess their potential as boron carriers for neutron capture therapy.  相似文献   

7.
Abstract

Liposomes loaded with the rhenium compound (bis-dimethylsulfoxido-cis-tetrachlorodi-μ-pivalatodirhenium(III) (cis–Re2((CH3)3CCOO)2Cl4?2DMSO, I) and cisplatin in the molar ratio of 4:1 as well as those loaded only with I were synthesized and characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering and electronic absorption spectroscopy. The relative stability of liposomes loaded with I is reflected by a minimal change in the electronic absorption spectra over a period of 8 days whereas the stability of those loaded with both drugs is lower, which we ascribe to the formation of new Re-Pt species inside the liposomes. Furthermore, the investigations of the co-encapsulation effects on the anticancer activity of the Re-Pt system were undertaken. Importantly, the co-encapsulated liposomes exhibit synergistic or additive anticancer activities in vivo, e.g. introduction of these liposomes into tumor-bearing rats demonstrated their antianemic, nephro- and hepato-protecting effects. These liposomes, which are active in cancer treatment, protect the dirhenium compounds from hydrolysis and preserve the biological properties of the Re-Pt hybrid. This study reveals the importance of combined therapy in nanotechnology and medicine.  相似文献   

8.
Boron neutron capture therapy is a promising binary treatment for cancer. It is based on the nuclear fission that occurs when non-radioactive 10B absorbs thermal neutrons. One of the two boron compounds currently used in clinical trials for this therapy is BSH. To ensure differentiated retention in the tumour versus normal tissue prior to treatment, routine analytical methods to determine pharmacokinetics must be available. For this purpose we have developed a new, easy and time saving approach, in which the separation of boron derivatives is performed by means of capillary electrophoresis (CE). The CE method allows analyses to be performed in short times (less than 18 min), sensitively (LOD 8 pg loaded on the capillary) quantitatively (LOQ 5 microg/ml) and with a high efficiency of separation. Moreover it is simpler than HPLC and more reproducible (intra- and inter-day values were +/-1% and +/-3%, respectively), and does not require a specific column of derivatization. Mass spectrometry analysis of boron derivatives in different samples was also performed to ensure correct attribution of the CE peaks.  相似文献   

9.
closo-Dodecaborate lipid liposomes were developed as new vehicles for boron delivery system (BDS) of neutron capture therapy. The current approach is unique because the liposome shell itself possesses cytocidal potential in combination with neutron irradiation. The liposomes composed of closo-dodecaborate lipids DSBL and DPBL displayed high cytotoxicity with thermal neutron irradiation. The closo-dodecaborate lipid liposomes were taken up into the cytoplasm by endocytosis without degradation of the liposomes. Boron concentration of 22.7 ppm in tumor was achieved by injection with DSBL-25% PEG liposomes at 20 mg B/kg. Promising BNCT effects were observed in the mice injected with DSBL-25% PEG liposomes: the tumor growth was significantly suppressed after thermal neutron irradiation (1.8 × 1012 neutrons/cm2).  相似文献   

10.
Small angle scattering can provide unique structural information on the shape, domain organisation, and interactions of biomacromolecules in solution. Small angle neutron scattering (SANS) combined with deuterium labelling makes it possible to define the positions of specific components within a complex while small angle X-ray scattering (SAXS) provides more precise data on the overall shape. Here I review four recent publications, three of which were presented at the Neutrons in Biology meeting at the STFC Rutherford Appleton Laboratory in July 2007, that utilise SANS, SAXS, and complementary techniques to define the solution structure of large multidomain proteins and macromolecular complexes. These four papers emphasise the critical importance of sample quality and characterisation as well as the important role played by complementary techniques in building structural models based on small angle scattering data. They show the ability of SANS and SAXS in determining solution structures provides an important complementary structural technique for large, flexible, and glycosylated proteins where high resolution structural techniques, such as crystallography and NMR, cannot be applied.  相似文献   

11.
A new murine monoclonal antibody (2C-8) was prepared by immunizing mice ip with CEA producing human pancreatic cancer cell line, AsPC-1.SDS-PAGE and Western blot analysis showed that 2C-8 monoclonal antibody recognized CEA and NCA. This anti-CEA monoclonal antibody was conjugated with large multilamellar liposomes incorporated 10B compound (Cs2 10B12H11SH). This immunoliposomes applicated to boron neutron capture therapy. AsPC-1 cells were incubated with the 10B-Lip-MoAb(CEA) for 8 hours. After the irradiation with thermal neutron (1 x 10(11)-1 x 10(13) n/cm2), boronated AsPC-1 cells were showed decreasing uptake of 3H-TdR compared with control group. The numbers of 10B atoms in liposomes bound to an antibody were in proportion to the dose of 10B compounds added and maximum number of 10B atoms was approximatory 1.2 x 10(4)/Ab. These data indicated that the immunoliposomes could deliver highly amount of 10B atoms to the tumor cells and exert cytotoxic effect by thermal neutron. BNCT with immunoliposome may be useful to the non resectable malignant tumors in clinical application.  相似文献   

12.
The boron-containing melanin precursor analogue p-boronophenylalanine (BPA) has previously been shown to selectively deliver boron to pigmented murine melanomas when administered in a single intragastric dose. If boron neutron capture therapy is to become a clinically useful method of radiation therapy for human malignant melanoma, the boron carrier must be capable of delivering useful amounts of boron to remote tumor sites (metastases) and to poorly pigmented melanomas. We have now determined the ability of BPA to accumulate in several nonpigmented melanoma models including human melanoma xenografts in nude mice. The absolute amount of boron in the nonpigmented melanomas was about 50% of that observed in the pigmented counterparts but was still selectively concentrated in the tumor relative to normal tissues in amounts sufficient for effective neutron capture therapy. Single intragastric doses of BPA resulted in selective localization of boron in the amelanotic Greene melanoma carried in the anterior chamber of the rabbit eye and in a pigmented murine melanoma growing in the lungs. The ratio of the boron concentration in these tumors to the boron concentration in the immediately adjacent normal tissue was in the range of 3:1 to 4:1. These distribution studies support the proposal that boron neutron capture therapy may be useful as a regional therapy for malignant melanoma.  相似文献   

13.
Boron-10 concentrations of 20 or 40 micrograms/g were attained in mouse B16 melanomas following one or two intragastric doses of p-boronophenylalanine (750 mg/kg body weight per dose), respectively. Tumor-to-normal-tissue (blood, muscle) boron concentration ratios were 4:1-6:1. The efficacy of boron neutron capture irradiation was monitored using the Wilcoxon two-sample test in conjunction with a system of ranking outcomes of different therapies that compared living mice and mice sacrificed because of excessive tumor growth concomitantly. Median survivals were extended progressively as radiation doses were increased up to 38.7 gray-equivalent (gray X relative biological effectiveness), with one of five and one of six tumors cured in each of the two highest dose groups, respectively. When comparable tumor inhibitory doses of 250-kVp X rays were used to treat these tumors, instead of the transient erythema and edema that resulted from boron neutron capture therapy, there resulted irreversible muscle necrosis in the irradiated zone and atrophy of the foot distal to the irradiated zone. The improvement in treatment outcome with boron neutron capture therapy is attributable to unprecedented tumor-to-normal-tissue radiation dose ratios of approximately 2.8 to 3.6.  相似文献   

14.
Abstract

Several 5-substituted-2′-deoxyuridines have been prepared in which the carborane moiety is attached at the terminus of a flexible hydrocarbon chain containing an ester linkage. These boron moieties as the B-10 enriched compounds have potentiality for use in the treatment of cancer by means of boron neutron capture therapy. A convenient synthetic route, in high yield, has been developed for the preparation of these 5-tethered carborane-containing pyrimidine nucleosides.  相似文献   

15.
A new approach for the synthesis of carborane isonitrile derivatives was developed. This approach involved the dehydration of both boron and carbon derived formamides using the Burgess reagent. The products, some of which were characterized by X-ray crystallography, can now be used as ligands for the synthesis of transition metal based boron neutron capture therapy and synovectomy agents and targeted radiopharmaceuticals.  相似文献   

16.
Boron neutron capture therapy (BNCT) is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET) particles, alpha and 7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM) modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT.  相似文献   

17.
The radiobiological effectiveness of an epithermal neutron beam is described using cell survival as the end point. The M67 epithermal neutron beam at the Nuclear Reactor Laboratory, Massachusetts Institute of Technology, that was used for clinical trials of boron neutron capture therapy was used to irradiate Chinese hamster ovary cells at seven depths in a water-filled phantom that simulated healthy tissue. No boron was added to the samples. Therefore, this experiment evaluates the biological effectiveness of the neutron and photon components, which comprise 80-95% of the dose to healthy tissue. Cell survival was dependent upon the depth in the phantom, as a result of moderation and attenuation of the epithermal neutron beam components by the overlying water. The results were compared with 250 kVp X irradiations to determine relative biological effectiveness values. Cell survival as a function of the dose delivered was lowest at the most shallow depth of 0.5 cm, and increased at depths of 1.5, 3, 4, 5.6, 6.6 and 8.1 cm. The gradual increase in cell survival with increasing depth in the phantom is due to the exponential drop of the fast-neutron intensity of the beam. These results are applicable to clinical boron neutron capture therapy Phase I/II trials in which healthy tissue toxicity was an end point.  相似文献   

18.
Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.  相似文献   

19.
Distinct biological properties of the ortho-carboranyl (1,2-dicarba-closo-dodecaboranyl) glycosides 1, 2 and 3 were evaluated to estimate the suitability of these compounds for cancer treatment by boron neutron capture therapy. The boron uptake into B16-Melanoma cells was significantly higher by incubating the cells with aqueous solutions of carboranyl glucoside 1 (11.2 ppm after 3h), lactoside 2 (13.2 ppm after 12h) and maltoside 3 (20.0 ppm after 24h) compared with solutions of clinically used p-boronophenylalanine (BPA) 5 (3.1 ppm after 24h). Carboranyl maltoside 3 was more effective than boron-10 enriched 5 in killing C-6 rat glioma cells by incubating the cells with the compound and subsequent treatment with thermal neutrons. 3 was also administrated iv, in concentrations of 25 mg boron/kg body weight to rats bearing brain tumors. After a period of 4h after administration the concentration of boron in the tumor tissue was 3.0 ppm.  相似文献   

20.
Boron neutron capture therapy (BNCT) is a binary cancer therapy, which combines the biochemical targeting of a boron‐containing drug with the regional localization of radiation treatment. Although the concept of BNCT has been known for decades, the selective delivery of boron into tumor cells remains challenging. G protein‐coupled receptors that are overexpressed on cancer cells in combination with peptidic ligands can be potentially used as shuttle system for a tumor‐directed boron uptake. In this study, we present the generation of short, boron‐rich peptide conjugates that target the ghrelin receptor. Expression of the ghrelin receptor on various cancer cells makes it a viable target for BNCT. We designed a novel hexapeptide super‐agonist that was modified with different specifically synthesized carborane monoclusters and tested for ghrelin receptor activation. A meta‐carborane building block with a mercaptoacetic acid linker was found to be optimal for peptide modification, owing to its chemical stability and a suitable activation efficacy of the conjugate. The versatility of this carborane for the development of peptidic boron delivery agents was further demonstrated by the generation of highly potent, boron‐loaded conjugates using the backbone of the known ghrelin receptor ligands growth hormone releasing peptide 6 and Ipamorelin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号