首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Pepsin is soluble in 65 per cent alcohol and may be readily crystallized from 20 per cent alcohol. The crystals appear as needles or plates which may be transformed into the usual hexagonal bipyramids by recrystallization from water. The different crystals are probably two crystalline forms of the same chemical substance. 2. The enzyme is quite stable in 20 per cent alcohol at pH 2.0 but is inactivated by high concentrations of alcohol. 3. The enzyme is stable for several hours in 65 per cent alcohol at pH 4.0 to 5.0 but is rapidly inactivated in more acid solution. 4. No increase in activity could be noted after treatment with hydrogen peroxide. 5. No proteolytic activity either before or after treatment with hydrogen peroxide could be found in trichloracetic acid filtrates, butyl alcohol extracts of pepsin preparations, or oxidized phenylhydrazine solutions.  相似文献   

2.
Disintegration of microorganisms in a continuously working industrial homogenizer has been studied. The homogenizer consists of rotating discs in a cylinder filled with glass beads. Different parameters for disintegration of baker's yeast were investigated. The disintegration process is a first-order reaction and it is influenced by the flow rate of the suspension and by the agitator speed. At a flow rate of 200 liters/hr about 85% of the yeast cells can be disrupted in a single pass through the disintegrator. This type of disintegrator can be used for disruption of cells in order to produce single-cell protein, active enzymes and other valuable cell components.  相似文献   

3.
Cells form the yeast Hansenula polymorpha (ATCC 26012) were successfully immobilized by entrapment in a polyacrylamide gel. The resulting gel showed high methanol oxidase activity especially after treatment with a detergent (CTAB). The enzymatic properties of the gel-entrapped cell were not very different from that of the soluble enzyme except that no inhibition was observed at high methanol concentration. In continuous reactors, the gel-entrapped cells showed a much higher stability than other enzyme preparations. The inactivation mechanism was investigated and proved to be the oxidation of essential SH group(s) of the methanol oxidase molecule by hydrogen peroxide. Treatment with β-mercaptoethanol prevented inactivation or regenerated activity.  相似文献   

4.
Summary A method for the production and preparation of an enzyme which degrades yeast cell walls from a species of aRhizoctonia (tentatively identified asR. solani) was established on a commercial scale. The production of crude enzyme powder, having a lytic activity of 100 units/mg, in batches of 80 kg is feasible.The enzyme preparation was evaluated for industrial use. When yeast cells were treated with this enzyme, the digestibility of feed yeast was improved 1.4–2 fold in vitro; the efficiency of a mechanical disintegrator in extracting cellular substances was increased 35–50%; the release of soluble glucans having widely varying degrees of polymerization was induced; the extraction of cellular protein by alkali was facilitated 2–3 fold; an 80% release of cell-bound invertase was induced and 2–3 times more yeast extract could be prepared.Studies on Fungal Enzymes Active in Hydrolysing Yeast Cell Wall (VII)  相似文献   

5.
The effect of treatment with inducing agents, such as mitomycin C, hydrogen peroxide and UV irradiation on the production of two inhibitors by different mutants fromEnterococcus faecalis S-48 was studied. With hydrogen peroxide and UV light no increase in either the absolute or the relative amount of antagonistic substances was observed. With mitomycin C, a significant increase in the individual cell capacity for inhibitor production was detected.  相似文献   

6.
Nutritional value of proteins from edible seaweed Palmaria palmata (dulse)   总被引:3,自引:0,他引:3  
Palmaria palmata (Dulse) is a red seaweed that may be a potential protein source in the human diet. Its protein content, amino acid composition, and protein digestibility were studied with algae collected every month over a 1-year period. Significant variations in protein content were observed according to the season: The highest protein content (21.9 +/- 3.5%) was found in the winter-spring period and the lowest (11.9 +/- 2.0%) in the summer-early autumn period. Most of the essential amino acids were present throughout the year. After 6-hour in vitro digestion in a cell dialysis using porcine pepsin and porcine pancreatin, the digestibility of proteins from Palmaria palmata crude powder, represented by dialyzed nitrogen, was estimated at 29.52 +/- 1.47%. Relative digestibility was 56%, using casein hydrolysis as 100% reference digestibility. In vitro digestibility of proteins extracted in water was analyzed by sodium dodecylsulfate polyacrylamide gel electrophoresis using either bovine trypsin, bovine chymotrypsin, pronase from Streptomyces griseus, or human intestinal juice. Dulse proteins were hydrolyzed to a limited extent, which confirmed a rather low digestibility. Hydrolysis rate was higher with trypsin and lower with chymotrypsin compared with the two other enzymatic systems, pronase and intestinal juice, respectively. The association of algal powder and protein extract to casein and bovine serum albumin, respectively, produced a significant decrease in the hydrolysis rate of the standard proteins. In conclusion, the digestibility of Palmaria palmata proteins seems to be limited by the algae non-proteic fraction.  相似文献   

7.
Summary In methanol-utilizing yeasts, catalase is an essential enzyme for the destruction of hydrogen peroxide generated by methanol oxidase (E.C. 1.1.3.13). It was found however that a catalase-negative mutant of Hansenula polymorpha is able to consume methanol in the presence of glucose in continuous cultures. At a dilution rate of 0.1 h-1, stable continuous cultures could be obtained during growth on methanol/glucose mixtures with a molar ratio of methanol/glucose between 0 to 2.4. In these cultures methanol oxidase was induced up to a level of 40% of that obtained in the wild-type strain. The hydrogen peroxide-decomposition activity of the mutant was studied in more detail by pulsing methanol to samples of steady-state cultures. Only after the addition of excess methanol the hydrogen peroxide-decomposing system became saturated, and the cells excreted hydrogen peroxide. This was accompanied by excretion of formaldehyde and a rapid loss of viability. The presence of extracellular catalase during a methanol pulse prevented the loss of viability. The nature of the alternative hydrogen peroxide-decomposing enzyme system remains to be elucidated. Its capacity strongly depended on the cultivation conditions and pretreatment of the cells. Cells grown on formaldehyde/glucose mixtures showed a lower methanol tolerance than those grown on the methanol/glucose mixtures. Freeze-drying of cells drastically enhanced the excretion of hydrogen peroxide, probably as a result of an inactivation of the decomposing system.  相似文献   

8.
Various DNA double-strand break repair mechanisms, in which DNA-dependent protein kinase (DNA-PK) has a major role, are involved both in the development and treatment of glioblastoma. The aim of the present study was to investigate how glioblastoma cells responded to hydrogen peroxide and staurosporine (STS) and how such a response is related to DNA-PK. Two human glioblastoma cell lines, M059J cells that lack DNA-PK activity, and M059K cells that express a normal level of DNA-PK, were exposed to hydrogen peroxide or STS. The response of the cells to hydrogen peroxide or STS was recorded by measuring cell death, which was detected by three different methods—MTT, annexin-V and propidium iodide staining, and JC-1 mitochondrial probe. The result showed that both hydrogen peroxide and STS were able to induce cell death of the glioblastoma cells and that the former was mainly associated with necrosis and the latter with apoptosis. Glioblastoma cells lacking DNA-PK were less sensitive to STS treatment than those containing DNA-PK. However, DNA-PK had no significant influence on hydrogen peroxide treatment. We further found that catalase, an antioxidant enzyme, could prevent cell death induced by hydrogen peroxide but not by STS, suggesting that the pathways leading to cell death by hydrogen peroxide and STS are different. We conclude that hydrogen peroxide and STS have differential effects on cell death of glioblastoma cells lacking DNA-dependent protein kinase. Such differential roles in the induction of glioblastoma cell death can be of significant value in selecting and/or optimizing the treatment for this malignant brain tumor.  相似文献   

9.
It has been examined whether the destruction of cell microtubules affects the increase in the intracellular hydrogen peroxide concentration caused by sodium arsenite, which induces the formation of stress ribonucleoprotein granules. As expected, sodium arsenite caused a 50% increase in hydrogen peroxide concentration in HeLa cells; on the other hand, another stress granule inducer tert-butylhydroquinone did not affect the peroxide concentration. The disruption of microtubules by nocodazole or vinblastine also resulted in some increase in the intracellular peroxide concentration, and the microtubule stabilization by taxol did not affect it. The combined treatment of cells with arsenite and antimicrotubule drugs caused an additive effect, and the peroxide concentration increased twice or more. Thus, the inhibition of stress granule formation after microtubule disruption cannot be explained by a decrease in peroxide concentration as compared with the affect of arsenite.  相似文献   

10.
This paper describes an examination of the cell envelope stability opposite to disruption by chemical and physical methods of extremely halophilic bacteria. The following methods of cell treatment were studied: solvent and chelating agents; pressure shearing at several pressures; ultrasonic disintegration for various times; ballistic disintegration; grinding with cold alumina; lysozyme digestion; osmotic shock; and freezing and thawing. The procedure is based on the determination of three cytoplasmic enzymes released by the cell treatment. Menadione reductase was also used as convenient marker enzyme for damage to the permeability barrier. Of all the methods, only pressure shearing and ultrasonic disintegration yielded a crude extract with high halophilic enzyme activities. These procedures are suitable in designing a cell fractionation scheme for halophilic enzyme purifications.  相似文献   

11.
Regional hyperthermia has potential for human cancer treatment, particularly in combination with systemic chemotherapy or radiotherapy. The mechanisms involved in heat-induced cell killing are currently unknown. Hyperthermia may increase oxidative stress in cells, and thus, oxidative stress could have a role in the mechanism of cell death. We use hydrogen peroxide as a model oxidant to improve understanding of interactions between heat and oxidative stress. Heat increased cytotoxicity of hydrogen peroxide in Chinese hamster ovary cells. Altered levels of cellular antioxidants should create an imbalance between prooxidant and antioxidant systems, thus modifying cytotoxic responses to heat and to oxidants. We determine the involvement of the two cellular antioxidant defenses against peroxides, catalase and the glutathione redox cycle, in cellular sensitivity to heat, to hydrogen peroxide, and to heat combined with the oxidant. Defense systems were either inhibited or increased. For inhibition studies, intracellular glutathione was diminished to less than 15% of its initial level by treatment with L-buthionine sulfoximine (1 mM, 24 h). Inhibition of catalase was achieved with 3-amino-1,2,4-triazole (20 mM, 2 h), which caused a 80% decrease in endogenous enzyme activity. To increase antioxidants, cells were pretreated with the thiol-containing reducing agents, N-acetyl-L-cysteine, 2-oxo-4-thiazolidine carboxylate, and 2-mercaptoethane sulfonate. These compounds increased intracellular glutathione levels by 30%. Catalase activity was increased by addition of exogenous enzyme to cells. We show that levels of glutathione and catalase affect cellular cytotoxic responses to heat and hydrogen peroxide, either used separately or in combination. These findings are relevant to mechanisms of cell killing at elevated temperatures and suggest the involvement of oxidative stress.  相似文献   

12.
The effect of hydrogen peroxide on the activities of catalase and superoxide dismutase (SOD) in S. cerevisiae has been studied under different experimental conditions: various H2O2 concentrations, time exposures, yeast cell densities and media for stress induction. The yeast treatment with 0.25–0.50 mM H2O2 led to an increase in catalase activity by 2–3-fold. At the same time, hydrogen peroxide caused an elevation by 1.6-fold or no increase in SOD activity dependently on conditions used. This effect was cancelled by cycloheximide, an inhibitor of protein synthesis in eukaryotes. Weak elevation of catalase and SOD activities in cells treated with 0.25–0.50 mM H2O2 found in this study does not correspond to high level of synthesis of the respective enzyme molecules observed earlier by others. It is well known that exposure of microorganisms to low sublethal concentrations of hydrogen peroxide leads to the acquisition of cellular resistance to a subsequent lethal oxidative stress. Hence, it makes possible to suggest that S. cerevisiae cells treated with low sublethal doses of hydrogen peroxide accumulate non-active stress-protectant molecules of catalase and SOD to survive further lethal oxidant concentrations.  相似文献   

13.
Palmaria palmata and Gracilaria verrucosa are edible red seaweeds and potential protein sources for human or animal nutrition, so studies were conducted on their in vitro protein digestibility. After 30 min predigestion by pepsin followed by 6 h digestion into a cell dialysis containing porcine pancreatin, the in vitro protein digestibility of P. palmata and G. verrucosa, expressed in regard to casein digestibility, was 4.9% and 42.1%, respectively. The level of protein digestibility seems to be related to the amount of soluble fibre, which was 45.3% and 30.5%, respectively.  相似文献   

14.
The enzymatic digestibility of steam-exploded Douglas-fir wood chips (steam exploded at 195 degrees C, 4.5 min, and 4.5% (w/w) SO(2)) was significantly improved using an optimized alkaline peroxide treatment. Best hydrolysis yields were attained when the steam-exploded material was post-treated with 1% hydrogen peroxide at pH 11.5 and 80 degrees C for 45 min. This alkaline peroxide treatment was applied directly to the water-washed, steam-exploded material eliminating the need for independent alkali treatment with 0.4% NaOH, which has been traditionally used to post-treat wood samples to try to remove residual lignin. Approximately 90% of the lignin in the original wood was solubilized by this novel procedure, leaving a cellulose-rich residue that was completely hydrolyzed within 48 h, using an enzyme loading of 10 FPU/g cellulose. About 82% of the originally available polysaccharide components of the wood could be recovered. The 18% of the carbohydrate that was not recovered was lost primarily to sugar degradation during steam explosion.  相似文献   

15.
[目的] 为探究重金属对淡水绿藻生长的影响。[方法] 选取对水质检测具有明显指示作用的普通小球藻(Chlorella vulgaris)为实验材料,CdCl2·2H2O和CrCl3·7H2O提供重金属离子,探究不同浓度Cr3+和Cd2+在单一和复合胁迫下对藻细胞浓度、叶绿素a及相关抗氧化酶活性的影响。[结果] 随着Cr3+和Cd2+浓度不断增加,藻细胞浓度呈先增长后下降趋势;叶绿素a含量呈现先下降后升高再下降的现象,浓度为1 mg/L的单一和复合胁迫下有最大值,且毒性作用表现为Cr3+ < Cd2+ < Cr3++Cd2+;与藻细胞膜相关的丙二醛(MDA)和过氧化氢(H2O2)含量随着重金属离子浓度的增大而增长;重金属离子浓度低于10 mg/L时对藻细胞内抗氧化酶系统中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)表现为促进作用,而大于10 mg/L时具有抑制作用。[结论] 结果表明在单一或复合重金属胁迫下,普通小球藻会充分调动与抗逆性相关的酶来维持自身的正常生长。  相似文献   

16.
A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were conducted as a completely randomized design and analysed using one-way ANOVA. Enzyme activities of the extracts, previously obtained from a liquid culture medium, were characterized in terms of laccase and peroxidase for ligninolytic activity. Carboxymethyl cellulase (CMCase) and avicell digesting cellulase (Avicelase) were used for cellulolytic enzyme assays. Wheat straw samples were incubated with enzyme extracts in a citrate buffer (pH 5.0) in a forced air oven at 25 °C for 6 days. In vitro NDF digestibility (IVNDFD), and the rate and extent of NDF fermentation, without and after incubation with the white-rot enzyme extracts, were determined using a gravimetric microbiological method and a gas production technique, respectively. Results from cell wall chemical composition showed that TV2 and BA enzyme extracts decreased NDF concentration (P<0.05) and that TV1 had higher activity (P<0.05) towards cellulose. There was an increase in IVNDFD (P<0.05), resulting from treatment of wheat straw with enzyme extracts from BA, TV1 and TV2, reaching a difference of 13% for TV2 (P<0.05), versus the non-treated straw control. Treatment with enzyme extract from TV2 caused increased gas production (P<0.05) after the first 20 h of incubation, and also increased the maximum rate of gas production, thus enhancing fermentation kinetics. This study indicates that enzyme extracts from white-rot fungi can be used to develop new approaches to overcome low digestibility of some plant cell walls. Utilization of different substrates to produce enzyme extracts can lead to production of viable ligninolytic complexes which could improve the nutritive value of fibrous feeds.  相似文献   

17.
The use of microalgae in biological wastewater treatment has been widely studied. However, there is a dearth of information about estimating the microalgae and bacteria concentrations. In order to maintain a stable algal-bacterial system, it is necessary to quantify both the algal and bacterial biomasses. Typically, microalgae and bacteria from flocs in activated sludge contribute to better biomass settleability. However, flocs cause problems when it comes to estimating the individual biomass concentrations of microalgae and bacteria in a symbiotic algae-bacteria aggregate. This study aimed to find the best disintegration treatment with low influence on the viability of the microalgal cell determined by its photosynthetic activity. In the present work, biological (enzyme solution), chemical (formaldehyde), mechanical (glass bead-beating), and physical (sonication) treatments were performed on microalgae–bacteria flocs (ALBA flocs) to disintegrate the community as a pre-treatment step in order to develop a method for estimating the algal and bacterial concentration and to quantify the degree of disintegration. The effectiveness of the methods to disintegrate ALBA flocs in descending order are the following: sonication, bead-beating, formaldehyde and enzyme application. Sonication treatment (40 W, 6 min) showed the best disintegration performance of the microalgal-bacterial flocs, up to 90 % with 17 % loss of the algal photosynthetic activity. Bead-beating (3 mm diameter, 80 s) achieved 80 % of disintegration with only 6 % loss of its photosynthetic activity. These results demonstrate the possibility of mild disintegration of compact ALBA flocs without having any adverse impact on the microalgae cell. After these treatments, it becomes possible to estimate the individual biomass concentrations of algae and bacteria manually such as with a cell-counting chamber.  相似文献   

18.
The optimization of the production of recombinant DNA-derived proteins in Escherichia coli was investigated. We chose restriction endonucleases EcoRI and EcoRV from E. coli as model proteins, despite the observation that overproduction can result in a toxic effect to the cells. The enzymes were expressed as fusion proteins consisting of protein A from Staphylococcus aureus and the desired enzyme in order to facilitate purification. The expression of the fusion protein was induced by a temperature shift using the pR promoter of phage lambda regulated by the repressor plasmid pRK248cI. Data from batch fermentations provided the basis for planning a continuous two-stage fermentation. The EcoRI enzyme activity was investigated as a function of the induction time after cell disintegration and allowed an estimation of yield of the continuous culture. Plasmid instability, which was only observed under continuous conditions, could be prevented by adding tetracycline (resistance of the repressor plasmid) to the medium. We established a continuous cell disintegration system and purified the fusion protein semicontinuously by affinity chromatography. The biological activity of the fusion protein was the same as the native endonuclease so there was no need for cleavage of the fusion protein and the product could be used without further processing.Correspondence to: K. Schügerl  相似文献   

19.
Two experiments were done to clarify whether or not cell rupture is necessary to improve the digestibility of major components of Chlorella vulgaris: K-5. Chlorella was treated with or without high pressure homogenization (1 × 108 N/m2 at less than −20°C) after a heating process (100-120°C). Chlorella (air-dry matter) contained 934 g dry matter and 244 g essential amino acids (total)/kg. Chemical composition was hardly altered irrespective of the treatment. In the first experiment, pepsin digestibility of chlorella protein was determined in vitro. The cell rupture by high pressure homogenization caused a small but significant improvement in pepsin digestibility of chlorella protein compared with the control. In the second experiment, total tract apparent digestibilities of chlorella were determined in the rat. Digestibility of chlorella protein was significantly enhanced by high pressure homogenization, but the difference (88.6% vs. 87.4%, P < 0.01) due to treatment was small and similar to that observed in the in vitro experiment. These results suggested that Chlorella strain vulgaris: K-5 may be an efficient protein source even without cell rupture.  相似文献   

20.
The two agar‐producing red algae, Gracilaria chilensis C. J. Bird, McLachlan & E. C. Oliveira and Gracilaria conferta (Schousboe ex Montagne) Montagne, responded with hydrogen peroxide (H2O2) release when agar oligosaccharides were added to the medium. In G. conferta, a transient release was observed, followed by a refractory state of 6 h. This response was sensitive to chemical inhibitors of NADPH oxidase, protein kinases, protein phosphatases, and calcium translocation in the cell, whereas it was insensitive to inhibitors of metalloenzymes. Transmission electron microscopic observations of the H2O2‐dependent formation of cerium peroxide from cerium chloride indicated oxygen activation at the plasma membrane of G. conferta. A putative system, consisting of a receptor specific to agar oligosaccharides and a plasma membrane‐located NADPH oxidase, appears to be responsible for the release of H2O2 in G. conferta. Subcellular examination of G. chilensis showed that the H2O2 release was located in the cell wall. It was sensitive to inhibitors of metalloenzymes and flavoenzymes, and no refractory state was observed. The release was correlated with accumulation of an aldehyde in the algal medium, suggesting that an agar oligosaccharide oxidase is present in the apoplast of G. chilensis. The presence of this enzyme could also be demonstrated by polyacrylamide electrophoresis under nondenaturating conditions and proven to be variable. Cultivation of G. chilensis at 16 to 17°C resulted in significantly stronger expression of agar oligosaccharide oxidase than cultivation at 12°C, which indicates that the enzyme is used under conditions that generally favor microbial agar macerating activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号