首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the DMD gene resulting in an absence of dystrophin in neurons and muscle. Respiratory failure is the most common cause of mortality and previous studies have largely concentrated on diaphragmatic muscle necrosis and respiratory failure component. Here, we investigated the integrity of respiratory control mechanisms in the mdx mouse model of DMD. Whole body plethysmograph in parallel with phrenic nerve activity recordings revealed a lower respiratory rate and minute ventilation during normoxia and a blunting of the hypoxic ventilatory reflex in response to mild levels of hypoxia together with a poor performance on a hypoxic stress test in mdx mice. Arterial blood gas analysis revealed low PaO2 and pH and high PaCO2 in mdx mice. To investigate chemosensory respiratory drive, we analyzed the carotid body by molecular and functional means. Dystrophin mRNA and protein was expressed in normal mice carotid bodies however, they are absent in mdx mice. Functional analysis revealed abnormalities in Dejours test and the early component of the hypercapnic ventilatory reflex in mdx mice. Together, these results demonstrate a malfunction in the peripheral chemosensory drive that would be predicted to contribute to the respiratory failure in mdx mice. These data suggest that investigating and monitoring peripheral chemosensory drive function may be useful for improving the management of DMD patients with respiratory failure.  相似文献   

2.
3.
4.
Pulmonary hypertension (PH) is characterized by sustained vasoconstriction, with subsequent extracellular matrix (ECM) production and smooth muscle cell (SMC) proliferation. Changes in the ECM can modulate vasoreactivity and SMC contraction. Galectin-1 (Gal-1) is a hypoxia-inducible beta-galactoside-binding lectin produced by vascular, interstitial, epithelial, and immune cells. Gal-1 regulates SMC differentiation, proliferation, and apoptosis via interactions with the ECM, as well as immune system function, and, therefore, likely plays a role in the pathogenesis of PH. We investigated the effects of Gal-1 during hypoxic PH by quantifying 1) Gal-1 expression in response to hypoxia in vitro and in vivo and 2) the effect of Gal-1 gene deletion on the magnitude of the PH response to chronic hypoxia in vivo. By constructing and screening a subtractive library, we found that acute hypoxia increases expression of Gal-1 mRNA in isolated pulmonary mesenchymal cells. In wild-type (WT) mice, Gal-1 immunoreactivity increased after 6 wk of hypoxia. Increased expression of Gal-1 protein was confirmed by quantitative Western analysis. Gal-1 knockout (Gal-1(-/-)) mice showed a decreased PH response, as measured by right ventricular pressure and the ratio of right ventricular to left ventricular + septum wet weight compared with their WT counterparts. However, the number and degree of muscularized vessels increased similarly in WT and Gal-1(-/-) mice. In response to chronic hypoxia, the decrease in factor 8-positive microvessel density was similar in both groups. Vasoreactivity of WT and Gal-1(-/-) mice was tested in vivo and with use of isolated perfused lungs exposed to acute hypoxia. Acute hypoxia caused a significant increase in RV pressure in wild-type and Gal-1(-/-) mice; however, the response of the Gal-1(-/-) mice was greater. These results suggest that Gal-1 influences the contractile response to hypoxia and subsequent remodeling during hypoxia-induced PH, which influences disease progression.  相似文献   

5.
6.
7.
Pulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus we hypothesized that there are genes for which expression is altered selectively in the lung in response to alveolar hypoxia. Using a novel subtractive array strategy, we compared gene responses to hypoxia in primary human pulmonary microvascular endothelial cells (HMVEC-L) with those in cardiac microvascular endothelium and identified 90 genes (forming 9 clusters) differentially regulated in the lung endothelium. From one cluster, we confirmed that the bone morphogenetic protein (BMP) antagonist, gremlin 1, was upregulated in the hypoxic murine lung in vivo but was unchanged in five systemic organs. We also demonstrated that gremlin protein was significantly increased by hypoxia in vivo and inhibited HMVEC-L responses to BMP stimulation in vitro. Furthermore, significant upregulation of gremlin was measured in lungs of patients with pulmonary hypertensive disease. From a second cluster, we showed that CXC receptor 7, a receptor for the proangiogenic chemokine CXCL12, was selectively upregulated in the hypoxic lung in vivo, confirming that our subtractive strategy had successfully identified a second lung-selective hypoxia-responsive gene. We conclude that hypoxia, typical of that encountered in pulmonary disease, causes lung-specific alterations in gene expression. This gives new insights into the mechanisms of pulmonary hypertension and vascular loss in chronic lung disease and identifies gremlin 1 as a potentially important mediator of vascular changes in hypoxic pulmonary hypertension.  相似文献   

8.
Chronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions. Using electron tomography, we discovered increased mitochondrial volume density and cristae abundance, yet also cristae fragmentation and a unique honeycomb-like structure in the mitochondria of hypoxia-adapted flies. The homeostatic levels of adenylate and energy charge were similar between hypoxia-adapted and naïve control flies and the hypoxia-adapted flies remained active under severe hypoxia as quantified by negative geotaxis behavior. The equilibrium ATP level was lower in hypoxia-adapted flies than those of the naïve controls tested under severe hypoxia that inhibited the motion of control flies. Our results suggest that the structural rearrangement in the mitochondria of hypoxia-adapted flies may be an important adaptive mechanism that plays a critical role in preserving adenylate homeostasis and metabolism as well as muscle function under chronic hypoxic conditions.  相似文献   

9.
Obesity is associated with many diseases, one of the most common being obstructive sleep apnea (OSA), which in turn leads to blood gas disturbances, including intermittent hypoxia (IH). Obesity, OSA and IH are associated with metabolic changes, and while much mammalian work has been done, mechanisms underlying the response to IH, the role of obesity and the interaction of obesity and hypoxia remain unknown. As a model organism, Drosophila offers tremendous power to study a specific phenotype and, at a subsequent stage, to uncover and study fundamental mechanisms, given the conservation of molecular pathways. Herein, we characterize the phenotype of Drosophila on a high-fat diet in normoxia, IH and constant hypoxia (CH) using triglyceride and glucose levels, response to stress and lifespan. We found that female flies on a high-fat diet show increased triglyceride levels (p<0.001) and a shortened lifespan in normoxia, IH and CH. Furthermore, flies on a high-fat diet in normoxia and CH show diminished tolerance to stress, with decreased survival after exposure to extreme cold or anoxia (p<0.001). Of interest, IH seems to rescue this decreased cold tolerance, as flies on a high-fat diet almost completely recovered from cold stress following IH. We conclude that the cross talk between hypoxia and a high-fat diet can be either deleterious or compensatory, depending on the nature of the hypoxic treatment.  相似文献   

10.
人体肝癌细胞急性低氧及低氧习服差异表达基因分析   总被引:9,自引:0,他引:9  
Wang JH  Shan YJ  Cong YW  Wu LJ  Yuan XL  Zhao ZH  Wang SQ  Chen JP 《生理学报》2003,55(3):324-330
本文分析了人体肝癌细胞(HepG2)急性低氧处理以及低氧习服处理后基因表达谱的改变。急性低氧处理为细胞在1%氧气中培养48h,低氧习服处理为细胞在1%氧气中培养24h,常氧培养24h,以此作为一个周期,重复6个周期。联合应用抑制消减杂交技术和cDNA芯片技术,筛选HepG2细胞经急性低氧处理与正常培养细胞相比差异表达的基因,以及经低氧习服处理细胞与正常培养细胞相比差异表达的基因。结果显示,HepG2细胞经急性低氧处理与在常氧条件下培养相比,差异表达的基因有37个,表达水平全部表现为下调,其中包括参与细胞周期、细胞应激、细胞信号转导、细胞骨架形成、转录相关蛋白及细胞代谢相关蛋白的基因,1个未知基因序列、4个EST序列、5个线粒体蛋白基因,另外有功能不明的蛋白质基因12个。低氧习服处理的细胞与常氧条件下培养的细胞相比,差异表达的基因有6个,其中包括两个线粒体蛋白基因、金属蛋白酶1基因、转铁蛋白基因、Thymosin .beta-4和TPT1基因。其中线粒体蛋白ND4、转铁蛋白、Thymosin.beta-4和TPT1基因的表达呈上调,线粒体NDl及金属蛋白酶1基因的表达水平呈下调。经低氧习服处理后,细胞低氧耐受力提高,低氧习服处理细胞基因的表达与急性低氧处理细胞和正常培养细胞的基因表达不同,这种变化可能与低氧习服细胞低氧耐受力的增强有关。  相似文献   

11.
Mitochondrial ß-oxidation of fatty acid provides a major source of energy in mammals. High altitude (HA), characterized by hypobaric hypoxia and low ambient temperatures, causes alteration in metabolic homeostasis. Several studies have depicted that hypoxic exposure in small mammals causes hypothermia due to hypometabolic state. Moreover, cold exposure along with hypoxia reduces hypoxia tolerance in animals. The present study investigated the rate of β-oxidation and key enzymes, carnitine palmitoyl transferase-I (CPT-I) and hydroxyacyl CoA dehydrogenase (HAD), in rats exposed to cold-hypobaric hypoxic environment. Male Sprague Dawley rats (190–220 g) were randomly divided into eight groups (n?=?6 rats in each group): 1 day hypoxia (H1); 7  days hypoxia (H7); 1 day cold (C1); 7 days cold (C7); 1 day cold-hypoxia (CH1); 7 days cold-hypoxia (CH7) exposed; and unexposed control for 1 and 7 days (UC1 and UC7). After exposure, animals were anaesthetized with ketamine (50 mg/kg body weight) and xylazine (10 mg/kg body weight) intraperitonialy and sacrificed. Mitochondrial CPT-I, HAD, 14C-palmitate oxidation in gastrocnemius muscle and liver, and plasma leptin were measured. Mitochondrial CPT-I was significantly reduced in muscle and liver in CH1 and CH7 as compared to respective controls. HAD activity was significantly reduced in H1 and CH7, and in H1, H7, CH1, and CH7 as compared to unexposed controls in muscle and liver, respectively. A concomitant decrease in 14C-palmitate oxidation was found. Significant reduction in plasma leptin in hypoxia and cold-hypoxia suggested hypometabolic state. It can be concluded that ß-oxidation of fatty acids is reduced in rats exposed to cold-hypoxic environment due to the persisting hypometabolic state in cold-hypoxia exposure.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is caused by deficiency of the cytoskeletal protein dystrophin. Oxidative stress is thought to contribute to the skeletal muscle damage in DMD; however, little is known about the role of oxidative damage in the pathogenesis of the heart failure that occurs in DMD patients. The dystrophin-deficient (mdx) mouse is an animal model of DMD that also lacks dystrophin. The current study investigates the role of the antioxidant N-acetylcysteine (NAC) on mdx cardiomyocyte function, Ca(2+) handling, and the cardiac inflammatory response. Treated mice received 1% NAC in their drinking water for 6 wk. NAC had no effect on wild-type (WT) mice. Immunohistochemistry experiments revealed that mdx mice had increased dihydroethidine (DHE) staining, an indicator of superoxide production; NAC-treatment reduced DHE staining in mdx hearts. NAC treatment attenuated abnormalities in mdx cardiomyocyte Ca(2+) handling. Mdx cardiomyocytes had decreased fractional shortening and decreased Ca(2+) sensitivity; NAC treatment returned mdx fractional shortening to WT values but did not affect the Ca(2+) sensitivity. Immunohistochemistry experiments revealed that mdx hearts had increased levels of collagen type III and the macrophage-specific protein, CD68; NAC-treatment returned collagen type III and CD68 expression close to WT values. Finally, mdx hearts had increased NADPH oxidase activity, suggesting it could be a possible source of increased reactive oxygen species in mdx mice. This study is the first to demonstrate that oxidative damage may be involved in the pathogenesis of the heart failure that occurs in mdx mice. Therapies designed to reduce oxidative damage might be beneficial to DMD patients with heart failure.  相似文献   

13.
Severe hypoxia can lead to injury and mortality in vertebrate or invertebrate organisms. Our research is focused on understanding the molecular mechanisms that lead to injury or adaptation to hypoxic stress using Drosophila as a model system. In this study, we employed the UAS-Gal4 system to dissect the protective role of Hsp70 in specific tissues in vivo under severe hypoxia. In contrast to overexpression in tissues such as muscles, heart, and brain, we found that overexpression of Hsp70 in hemocytes of flies provides a remarkable survival benefit to flies exposed to severe hypoxia for days. Furthermore, these flies were tolerant not only to severe hypoxia but also to other stresses such as oxidant stress (e.g., paraquat feeding or hyperoxia). Interestingly we observed that the better survival with Hsp70 overexpression in hemocytes under hypoxia or oxidant stress is causally linked to reactive oxygen species (ROS) reduction in whole flies. We also show that hemocytes are a major source of ROS generation, leading to injury during hypoxia, and their elimination results in a better survival under hypoxia. Hence, our study identified a protective role for Hsp70 in Drosophila hemocytes, which is linked to ROS reduction in the whole flies and thus helps in their remarkable survival during oxidant or hypoxic stress.  相似文献   

14.
PKCε is central to cardioprotection. Sub-proteome analysis demonstrated co-localization of activated cardiac PKCε (aPKCε) with metabolic, mitochondrial, and cardioprotective modulators like hypoxia-inducible factor 1α (HIF-1α). aPKCε relocates to the mitochondrion, inactivating glycogen synthase kinase 3β (GSK3β) to modulate glycogen metabolism, hypertrophy and HIF-1α. However, there is no established mechanistic link between PKCε, p-GSK3β and HIF1-α. Here we hypothesized that cardiac-restricted aPKCε improves mitochondrial response to hypobaric hypoxia by altered substrate fuel selection via a GSK3β/HIF-1α-dependent mechanism. aPKCε and wild-type (WT) mice were exposed to 14 days of hypobaric hypoxia (45 kPa, 11% O(2)) and cardiac metabolism, functional parameters, p-GSK3β/HIF-1α expression, mitochondrial function and ultrastructure analyzed versus normoxic controls. Mitochondrial ADP-dependent respiration, ATP production and membrane potential were attenuated in hypoxic WT but maintained in hypoxic aPKCε mitochondria (P < 0.005, n = 8). Electron microscopy revealed a hypoxia-associated increase in mitochondrial number with ultrastructural disarray in WT versus aPKCε hearts. Concordantly, left ventricular work was diminished in hypoxic WT but not aPKCε mice (glucose only perfusions). However, addition of palmitate abrogated this (P < 0.05 vs. WT). aPKCε hearts displayed increased glucose utilization at baseline and with hypoxia. In parallel, p-GSK3β and HIF1-α peptide levels were increased in hypoxic aPKCε hearts versus WT. Our study demonstrates that modest, sustained PKCε activation blunts cardiac pathophysiologic responses usually observed in response to chronic hypoxia. Moreover, we propose that preferential glucose utilization by PKCε hearts is orchestrated by a p-GSK3β/HIF-1α-mediated mechanism, playing a crucial role to sustain contractile function in response to chronic hypobaric hypoxia.  相似文献   

15.
The purpose of this study was to determine whether mild hypobaric hypoxic preconditioning provides protection against learning deficit caused by subsequent more severe hypoxia insult. Learning was examined using a passive avoidance task. Three groups of Wistar male rats: the intact and exposed to either severe hypoxia (160 Torr, exposition 3 h) or mild hypobaric hypoxic preconditioning (360 Torr, exposition 2 h, repeated three or six times daily) followed by severe hypoxia, were included in this study. In experiment 1 a passive avoidance response was acquired in 15 min immediately after hypoxia. In experiment 2 rats were exposed to hypoxia in 60 min after the acquisition of passive avoidance response. The mild hypobaric hypoxic preconditioning significantly attenuated the hypoxia-induced learning deficit in rats in Experiments 1 and 2. In experiment 1 the mild hypobaric hypoxic preconditioning repeated six times was more effective in protection against learning deficit in hypoxia exposed rats than in the case of triple mild hypobaric hypoxic preconditioning. The amount of rats suffered irreversible respiratory arrest was also assessed in this study. It was found that 50% of rats exposed to severe hypoxia died in consequence of this pathology, whereas in rats preconditioned before the severe hypoxia only 15% died for this reason. The overall results indicate that the mild hypobaric hypoxic preconditioning significantly increases CNS resistance to severe hypoxia in rats.  相似文献   

16.
We characterized 26 wild fruit flies comparative population genomics from six different altitude and latitude locations by whole genome resequencing. Genetic diversity was relatively higher in Ganzi and Chongqing populations. We also found 13 genes showing selection signature between different altitude flies and variants related to hypoxia and temperature stimulus, were preferentially selected during the flies evolution. One of the most striking selective sweeps found in all high altitude flies occurred in the region harboring Hsp70Aa and Hsp70Ab on chromosome 3R. Interestingly, these two genes are involved in GO terms including response to hypoxia, unfolded protein, temperature stimulus, heat, oxygen levels. Mutation in HPH gene, a candidate gene in the hypoxia inducible factor pathway, might contributes to hypoxic high-altitude adaptation. Intriguingly, some of the selected genes, primarily utilized in humans, were involved in the response to hypoxia, which could imply a conserved molecular mechanisms underlying high-altitude adaptation between insects and humans.  相似文献   

17.
When oxygen becomes limiting, cells shift primarily to a glycolytic mode for generation of energy. A key regulator of glycolytic flux is fructose-2,6-bisphosphate (F-2,6-BP), a potent allosteric regulator of 6-phosphofructo-1-kinase (PFK-1). The levels of F-2,6-BP are maintained by a family of bifunctional enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB or PFK-2), which have both kinase and phosphatase activities. Each member of the enzyme family is characterized by their phosphatase:kinase activity ratio (K:B) and their tissue-specific expression. Previous work demonstrated that one of the PFK-2 isozyme genes, PFKFB-3, was induced by hypoxia through the hypoxia-inducible factor-1 (HIF-1) pathway. In this study we examined the basal and hypoxic expression of three members of this family in different organs of mice. Our findings indicate that all four isozymes (PFKFB-1-4) are responsive to hypoxia in vivo. However, their basal level of expression and hypoxia responsiveness varies in the different organs studied. Particularly, PFKFB-1 is highly expressed in liver, heart and skeletal muscle, with the highest response to hypoxia found in the testis. PFKFB-2 is mainly expressed in the lungs, brain and heart. However, the highest hypoxia responses are found only in liver and testis. PFKFB-3 has a variable low basal level of expression in all organs, except skeletal muscle, where it is highly expressed. Most importantly, its hypoxia responsiveness is the most ample of all three genes, being strongly induced in the lungs, liver, kidney, brain, heart and testis. Further studies showed that PFKFB-1 and PFKFB-2 were highly responsive to hypoxia mimics such as transition metals, iron chelators and inhibitors of HIF hydroxylases, suggesting that the hypoxia responsiveness of these genes is also regulated by HIF proteins. In summary, our data demonstrate that PFK-2 genes are responsive to hypoxia in vivo, indicating a physiological role in the adaptation of the organism to environmental or localized hypoxia/ischemia.  相似文献   

18.
Neonatal calves develop airflow limitation due to chronic hypobaric hypoxia   总被引:1,自引:0,他引:1  
Neonates and infants presenting with pulmonary hypertension and chronic hypoxia often exhibit airway obstruction. To investigate this association, we utilized a system in which neonatal calves are exposed to chronic hypobaric hypoxia and develop severe pulmonary hypertension. For the present study, one of each pair of six age-matched pairs of neonatal calves was continuously exposed to hypobaric hypoxia at 4,500 m (CH); the other remained at 1,500 m. At 2 wk of age, mean pulmonary arterial pressure (MPAP), dynamic lung compliance (Cdyn), resistance (RL), and static respiratory system compliance (Crs) were measured at 4,500 m in both CH and control calves exposed acutely to hypoxia (C). These measurements were repeated after cumulative administrations of nebulized methacholine (MCh). Tissues were removed for histological examination and assessment of bronchial ring contractility to MCh and KCl. After 2 wk of hypobaric hypoxia, MPAP (C 35 +/- 1.7 vs. CH 120 +/- 7 mmHg, P less than 0.001) and RL (C 2.64 +/- 0.16 vs CH 4.99 +/- 0.47 cmH2O.l-1s, P less than 0.001) increased. Cdyn (C 0.100 +/- 0.01 vs. CH 0.082 +/- 0.007 l/cmH2O) and Crs (CH 0.46 +/- 0.003 vs. C 0.59 +/- 0.009 l/cmH2O) were not significantly different. Compared with airways of C calves, airways of CH animals did not exhibit in vivo or in vitro MCh hyperresponsiveness; however, in vitro contractility to KCl of airways from CH animals was significantly increased. Histologically, airways from the CH calves showed increases in airway fibrous tissue and smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号