首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Class 1 integrons are widespread genetic elements playing a major role in the dissemination of antibiotic resistance. They allow bacteria to capture, express and exchange antibiotic resistance genes embedded within gene cassettes. Acquisition of gene cassettes is catalysed by the class 1 integron integrase, a site-specific recombinase playing a key role in the integron system. In in vitro planktonic culture, expression of intI1 is controlled by the SOS response, a regulatory network which mediates the repair of DNA damage caused by a wide range of bacterial stress, including antibiotics. However, in vitro experimental conditions are far from the real lifestyle of bacteria in natural environments such as the intestinal tract which is known to be a reservoir of integrons. In this study, we developed an in vivo model of intestinal colonization in gnotobiotic mice and used a recombination assay and quantitative real-time PCR, to investigate the induction of the SOS response and expression and activity of the class 1 integron integrase, IntI1. We found that the basal activity of IntI1 was higher in vivo than in vitro. In addition, we demonstrated that administration of a subinhibitory concentration of ciprofloxacin rapidly induced both the SOS response and intI1 expression that was correlated with an increase of the activity of IntI1. Our findings show that the gut is an environment in which the class 1 integron integrase is induced and active, and they highlight the potential role of integrons in the acquisition and/or expression of resistance genes in the gut, particularly during antibiotic therapy.  相似文献   

2.
Integrative and conjugative elements (ICEs, also known as conjugative transposons) are mobile elements that are found integrated in a host genome and can excise and transfer to recipient cells via conjugation. ICEs and conjugative plasmids are found in many bacteria and are important agents of horizontal gene transfer and microbial evolution. Conjugative elements are capable of self-transfer and also capable of mobilizing other DNA elements that are not able to self-transfer. Plasmids that can be mobilized by conjugative elements are generally thought to contain an origin of transfer (oriT), from which mobilization initiates, and to encode a mobilization protein (Mob, a relaxase) that nicks a site in oriT and covalently attaches to the DNA to be transferred. Plasmids that do not have both an oriT and a cognate mob are thought to be nonmobilizable. We found that Bacillus subtilis carrying the integrative and conjugative element ICEBs1 can transfer three different plasmids to recipient bacteria at high frequencies. Strikingly, these plasmids do not have dedicated mobilization-oriT functions. Plasmid mobilization required conjugation proteins of ICEBs1, including the putative coupling protein. In contrast, plasmid mobilization did not require the ICEBs1 conjugative relaxase or cotransfer of ICEBs1, indicating that the putative coupling protein likely interacts with the plasmid replicative relaxase and directly targets the plasmid DNA to the ICEBs1 conjugation apparatus. These results blur the current categorization of mobilizable and nonmobilizable plasmids and indicate that conjugative elements play a role in horizontal gene transfer even more significant than previously recognized.  相似文献   

3.
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

4.
Conjugative plasmids are key agents of horizontal gene transfer (HGT) that accelerate bacterial adaptation by vectoring ecologically important traits between strains and species. However, although many conjugative plasmids carry beneficial traits, all plasmids exert physiological costs-of-carriage on bacteria. The existence of conjugative plasmids, therefore, presents a paradox because non-beneficial plasmids should be lost to purifying selection, whereas beneficial genes carried on plasmids should be integrated into the bacterial chromosome. Several ecological solutions to the paradox have been proposed, but none account for co-adaptation of bacteria and conjugative plasmids. Drawing upon evidence from experimental evolution, we argue that HGT via conjugation can only be fully understood in a coevolutionary framework.  相似文献   

5.
Conjugative Plasmid Transfer in Gram-Positive Bacteria   总被引:24,自引:0,他引:24       下载免费PDF全文
Conjugative transfer of bacterial plasmids is the most efficient way of horizontal gene spread, and it is therefore considered one of the major reasons for the increase in the number of bacteria exhibiting multiple-antibiotic resistance. Thus, conjugation and spread of antibiotic resistance represents a severe problem in antibiotic treatment, especially of immunosuppressed patients and in intensive care units. While conjugation in gram-negative bacteria has been studied in great detail over the last decades, the transfer mechanisms of antibiotic resistance plasmids in gram-positive bacteria remained obscure. In the last few years, the entire nucleotide sequences of several large conjugative plasmids from gram-positive bacteria have been determined. Sequence analyses and data bank comparisons of their putative transfer (tra) regions have revealed significant similarities to tra regions of plasmids from gram-negative bacteria with regard to the respective DNA relaxases and their targets, the origins of transfer (oriT), and putative nucleoside triphosphatases NTP-ases with homologies to type IV secretion systems. In contrast, a single gene encoding a septal DNA translocator protein is involved in plasmid transfer between micelle-forming streptomycetes. Based on these clues, we propose the existence of two fundamentally different plasmid-mediated conjugative mechanisms in gram-positive microorganisms, namely, the mechanism taking place in unicellular gram-positive bacteria, which is functionally similar to that in gram-negative bacteria, and a second type that occurs in multicellular gram-positive bacteria, which seems to be characterized by double-stranded DNA transfer.  相似文献   

6.
Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.  相似文献   

7.
Natural transformation by competence is a major mechanism of horizontal gene transfer in bacteria. Competence is defined as the genetically programmed physiological state that enables bacteria to actively take up DNA from the environment. The conditions that signal competence development are multiple and elusive, complicating the understanding of its evolutionary significance. We used expression of the competence gene comEA as a reporter of competence development and screened several hundred molecules for their ability to induce competence in the freshwater living pathogen Legionella pneumophila. We found that comEA expression is induced by chronic exposure to genotoxic molecules such as mitomycin C and antibiotics of the fluoroquinolone family. These results indicated that, in L. pneumophila, competence may be a response to genotoxic stress. Sunlight-emitted UV light represents a major source of genotoxic stress in the environment and we found that exposure to UV radiation effectively induces competence development. For the first time, we show that genetic exchanges by natural transformation occur within an UV-stressed population. Genotoxic stress induces the RecA-dependent SOS response in many bacteria. However, genetic and phenotypic evidence suggest that L. pneumophila lacks a prototypic SOS response and competence development in response to genotoxic stress is RecA independent. Our results strengthen the hypothesis that competence may have evolved as a DNA damage response in SOS-deficient bacteria. This parasexual response to DNA damage may have enabled L. pneumophila to acquire and propagate foreign genes, contributing to the emergence of this human pathogen.  相似文献   

8.
The human pathogen Vibrio cholerae carries a chromosomal superintegron (SI). The SI contains an array of hundreds of gene cassettes organized in tandem which are stable under conditions when no particular stress is applied to bacteria (such as during laboratory growth). Rearrangements of these cassettes are catalyzed by the activity of the associated integron integrase. Understanding the regulation of integrase expression is pivotal to fully comprehending the role played by this genetic reservoir for bacterial adaptation and its connection with the development of antibiotic resistance. Our previous work established that the integrase is regulated by the bacterial SOS response and that it is induced during bacterial conjugation. Here, we show that transformation, another horizontal gene transfer (HGT) mechanism, also triggers integrase expression through SOS induction, underlining the importance of HGT in genome plasticity. Moreover, we report a new cyclic AMP (cAMP)-cAMP receptor protein (CRP)-dependent regulation mechanism of the integrase, highlighting the influence of the extracellular environment on chromosomal gene content. Altogether, our data suggest an interplay between different stress responses and regulatory pathways for the modulation of the recombinase expression, thus showing how the SI remodeling mechanism is merged into bacterial physiology.  相似文献   

9.
Plasmids are important vehicles for horizontal gene transfer and rapid adaptation in bacteria, including the spread of antibiotic resistance genes. Conjugative transfer of a plasmid from a plasmid-bearing to a plasmid-free bacterial cell requires contact and attachment of the cells followed by plasmid DNA transfer prior to detachment. We introduce a system of differential equations for plasmid transfer in well-mixed populations that accounts for attachment, DNA transfer, and detachment dynamics. These equations offer advantages over classical mass-action models that combine these three processes into a single “bulk” conjugation rate. By decomposing the process of plasmid transfer into its constituent parts, this new model provides a framework that facilitates meaningful comparisons of plasmid transfer rates in surface and liquid environments. The model also allows one to account for experimental and environmental effects such as mixing intensity. To test the adequacy of the model and further explore the effects of mixing on plasmid transfer, we performed batch culture experiments using three different plasmids and a range of different mixing intensities. The results show that plasmid transfer is optimized at low to moderate shaking speeds and that vigorous shaking negatively affects plasmid transfer. Using reasonable assumptions on attachment and detachment rates, the mathematical model predicts the same behavior.  相似文献   

10.
Conjugative transfer of mobilizable derivatives of the Escherichia coli narrow-host-range plasmids pBR322, pBR325, pACYC177, and pACYC184 from E. coli to species of the gram-positive genera Corynebacterium and Brevibacterium resulted in the integration of the plasmids into the genomes of the recipient bacteria. Transconjugants appeared at low frequencies and reproducibly with a delay of 2 to 3 days compared with matings with replicative vectors. Southern analysis of corynebacterial transconjugants and nucleotide sequences from insertion sites revealed that integration occurs at different locations and that different parts of the vector are involved in the process. Integration is not dependent on indigenous insertion sequence elements but results from recombination between very short homologous DNA segments (8 to 12 bp) present in the vector and in the host DNA. In the majority of the cases (90%), integration led to cointegrate formation, and in some cases, deletions or rearrangements occurred during the recombination event. Insertions were found to be quite stable even in the absence of selective pressure.  相似文献   

11.
Plasmids spread very fast in heterogeneous bacterial communities   总被引:1,自引:0,他引:1  
Dionisio F  Matic I  Radman M  Rodrigues OR  Taddei F 《Genetics》2002,162(4):1525-1532
Conjugative plasmids can mediate gene transfer between bacterial taxa in diverse environments. The ability to donate the F-type conjugative plasmid R1 greatly varies among enteric bacteria due to the interaction of the system that represses sex-pili formations (products of finOP) of plasmids already harbored by a bacterial strain with those of the R1 plasmid. The presence of efficient donors in heterogeneous bacterial populations can accelerate plasmid transfer and can spread by several orders of magnitude. Such donors allow millions of other bacteria to acquire the plasmid in a matter of days whereas, in the absence of such strains, plasmid dissemination would take years. This "amplification effect" could have an impact on the evolution of bacterial pathogens that exist in heterogeneous bacterial communities because conjugative plasmids can carry virulence or antibiotic-resistance genes.  相似文献   

12.
13.
One hundred and fifty Gram-negative bacteria isolated from patient specimens at King Faisal Specialist Hospital were examined for their ability to transfer antibiotic resistance plasmids to a sensitive Escherichia coli recipient in conjugation and transformation experiments. Agarose gel electrophoresis was used to enumerate and size the R-plasmids found, and Southern DNA hybridization was used to assess similarities between antibiotic resistance plasmids from different bacteria and sources. Of the bacterial isolates tested 65% contained plasmids, 70% of these transferred antibiotic resistance to E. coli, and 40% transferred multiple, linked resistances on R-plasmids. DNA hybridization of these R-plasmids demonstrated widespread similarities between plasmids from different bacterial genera and from different hospital locations. In particular, a gene encoding ampicillin resistance appeared especially widespread, indicating that a transposon may be mediating transmission of this resistance.  相似文献   

14.
Integrons constitute a novel family of DNA elements which evolved by site-specific integration of discrete units between two conserved segments. On the In4 integron of Tn1696, a precisely inserted gene cassette of 1,549 bp conferring nonenzymatic chloramphenicol resistance (cmlA) is present between the streptomycin-spectinomycin resistance (aadA2) gene cassette and the 3'-conserved segment of the integron. In this study, we present the nucleotide sequence of the cmlA gene cassette of Tn1696, show its similarity to bacterial efflux systems and other transport proteins, and present evidence for alterations that its expression exerts on bacterial membranes. The cmlA gene cassette apparently carries its own promoter(s), a situation that has not heretofore been observed in the integrons of multiresistance plasmids and transposons of gram-negative bacteria. One or more of these promoters were shown to be functionally active in expressing a cat marker gene from promoter-probe vectors. The putative CmlA polypeptide appears to provoke a reduction of the content of the major porins OmpA and OmpC.  相似文献   

15.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet(r)) and lincomycin (lin(r)) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative pl9cat plasmid producing a hybrid plasmid. Insertion frequency was 10(-4)-10(-5). Then genes tet(r) and lin(r) were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F'- and R' plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

16.
We report on the mobilization of shuttle plasmids from gram-negative Escherichia coli to gram-positive corynebacteria mediated by P-type transfer functions. Introduction of plasmids into corynebacteria was markedly enhanced after heat treatment of the recipient cells. High-frequency plasmid transfer was also observed when the restriction system of the recipient was mutated. On the basis of our data, we conclude that efficient DNA transfer from gram-negative to gram-positive bacteria, at least to coryneform bacteria, is conceivable in certain natural ecosystems.  相似文献   

17.
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are mobile genetic elements that can transfer from one bacterial cell to another by conjugation. ICEBs1 is integrated into the trnS-leu2 gene of Bacillus subtilis and is regulated by the SOS response and the RapI-PhrI cell-cell peptide signaling system. When B. subtilis senses DNA damage or high concentrations of potential mating partners that lack the element, ICEBs1 excises from the chromosome and can transfer to recipients. Bacterial conjugation usually requires a DNA relaxase that nicks an origin of transfer (oriT) on the conjugative element and initiates the 5'-to-3' transfer of one strand of the element into recipient cells. The ICEBs1 ydcR (nicK) gene product is homologous to the pT181 family of plasmid DNA relaxases. We found that transfer of ICEBs1 requires nicK and identified a cis-acting oriT that is also required for transfer. Expression of nicK leads to nicking of ICEBs1 between a GC-rich inverted repeat in oriT, and NicK was the only ICEBs1 gene product needed for nicking. NicK likely mediates conjugation of ICEBs1 by nicking at oriT and facilitating the translocation of a single strand of ICEBs1 DNA through a transmembrane conjugation pore.  相似文献   

18.
Broad host range gene transfer: plasmids and conjugative transposons   总被引:2,自引:0,他引:2  
Abstract Conjugation is the primary route of broad host range DNA transfer between different genera of bacteria. Plasmids are the most familiar conjugative elements, but there are also self-transmissible integrated elements called conjugative transposons. Conjugative transposons have been found in many genera of gram-positive bacteria, in mycoplasmas and in gram negative bacteria such as Bacteriodes spp. and Moraxella spp., and they have a very broad host range. The best-studied conjugative transposons are: the ones related to Tn 916 , a 16 kb conjugative transposon found originally in Gram-positive bacteria; Tn 5276 , a 70 kb conjugative transposon from Lactococcus lactis ; and a group of large (> 70 kb) conjugative transposons found in Bacteroides spp. Transfer of conjugative transposons takes place in three steps: excision to form a circular intermediate, transfer of one strand of the circular intermediate to a recipient, and integration into the recipient genome. Some conjugative transposons integrate almost randomly, whereas other integrate site-specifically. Conjugative transposons not only transfer themselves but also mobilize co-resident plasmids, either by providing transfer functions in trans or by inserting themselves into the plasmid. In addition, the conjugative transposons found in Bacteroides spp. can excise and mobilize unlinked integrated elements, called NBUs. Transfer of many of the Bacteroides conjugative transposons is regulated by tetracycline, whereas transfer of Tn 916 and other conjugative transposons appears to be constitutive. The conjugative transposons are clearly widespread in clinical isolates, but their distribution in environmental isolates remains to be determined.  相似文献   

19.
The establishment of molecular genetic techniques is essential for development of new treatments for mycobacterial infections. To this end, we recently described a novel DNA transfer process that occurs in the model mycobacterial organism Mycobacterium smegmatis. This transfer system is most like conjugal DNA transfer in that it requires two viable parents, is DNAse resistant and occurs between distinct donor and recipient strains. Cis-acting sequences called bom, which confer transferability, are distinct from the prototypical oriT sites of conjugative plasmids, as they occur at multiple locations in the chromosome and require RecA in the recipient to mediate plasmid recircularization. Here, we show that a plasmid containing two of these bom regions can undergo several fates in the recipient cell, each of which require recipient recombination functions. The products of plasmid transfer that we observed provide further insights toward a model for DNA transfer. Furthermore, we have taken advantage of the recombination events that occur in the recipient to develop simple procedures for capturing, or replacing specific segments of the recipient chromosome. To demonstrate the potential of the system, we describe the capture and deletion of 25 kb of the M. smegmatis chromosome, and targeted-allele exchange of the recipient recB and recD genes. Using these transfer-mediated rearrangements, we demonstrate that homology with the recipient chromosome and RecB, but not RecD, are essential for DNA transfer.  相似文献   

20.
Lateral gene transfer has been proposed as a fundamental process underlying bacterial diversity. Transposons, plasmids and phage are widespread and have been shown to significantly contribute to lateral gene transfer. However, the processes by which disparate genes are assembled and integrated into the host regulatory network to yield new phenotypes are poorly known. Recent discoveries about the integron/gene cassette system indicate it has the potential to play a role in this process. Gene cassettes are small mobile elements typically consisting of a promoterless orf and a recombination site. Integrons are capable of acquisition and re-arrangement of gene cassettes and of the expression of their associated genes. The potential of the integron/gene cassette system is thus largely determined by the diversity contained within the cassette pool and the rate at which integrons sample this pool. We show here using a polymerase chain reaction (PCR) approach by which the environmental gene cassette (EGC) metagenome can be directly sampled that this metagenome contains both protein-coding and non-protein coding genes. Environmental gene cassette-associated recombination sites showed greater diversity than previously seen in integron arrays. Class 1 integrons were shown to be capable of accessing this gene pool through tests of recombinational activity with a representative range of EGCs. We propose that gene cassettes represent a vast, prepackaged genetic resource that could be thought of as a metagenomic template for bacterial evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号