首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.  相似文献   

2.
Mutations in several functionally important regions of the 23S rRNA of E. coli increase the levels of frameshifting and readthrough of stop codons. These mutations include U2555A, U2555G, ΔA1916 and U2493C. The mutant rRNAs are lethal when expressed at high levels from a plasmid, in strains also expressing wild type rRNA from chromosomal rrn operons. The lethal phenotype can be suppressed by a range of second-site mutations in 23S rRNA. However, analysis of the functionality of the double mutant rRNAs in heterogeneous ribosome populations shows that in general, the second site mutations do not restore function. Instead, they prevent the assembly, or entry of the mutant 50S subunits into the functioning 70S ribosome and polysome pools, by affecting the competitiveness of the mutant subunits for association with 30S particles. The second-site mutations lie in regions of the 23S rRNA involved in subunit assembly, intersubunit bridge formation and interactions of the ribosome with tRNAs and factors. These second site suppressor mutations thus define functionally important rRNA nucleotides and this approach may be of general use in the functional mapping of large RNAs.  相似文献   

3.
4.
TrfA is the only plasmid-encoded protein required for initiation of replication of the broad-host-range plasmid RK2. Here we describe the isolation of four trfA mutants temperature sensitive for replication in Pseudomonas aeruginosa. One of the mutations led to substitution of arginine 247 with cysteine. This mutant has been previously described to be temperature sensitive for replication, but poorly functional, in Escherichia coli. The remaining three mutants were identical, and each of them carried two mutations, one leading to substitution of arginine 163 with cysteine (mutation 163C) and the other a codon-neutral mutation changing the codon for glycine 235 from GGC to GGU (mutation 235). Neither of the two mutations caused a temperature-sensitive phenotype alone in P. aeruginosa, and the effect of the neutral mutation was caused by its ability to strongly reduce the trfA expression level. The double mutant and mutant 163C could not be stably maintained in E. coli, but mutant 235 could be established and, surprisingly, displayed a temperature-sensitive phenotype in this host. Mutation 235 strongly reduced the trfA expression level also in E. coli. The glycine 85 codon in trfA mRNA is GGU, and a change of this to GGC did not significantly affect expression. In addition, we found that wild-type trfA was expressed at much lower levels in E. coli than in P. aeruginosa, indicating that this level is a key parameter in the determination of the temperature-sensitive phenotypes in different species. The E. coli lacZ gene was translationally fused at the 3′ end and internally in trfA, in both cases leading to elimination of the effect of mutation 235 on expression. We therefore propose that this mutation acts through an effect on mRNA structure or stability.  相似文献   

5.
The sliding β-clamp, an important component of the DNA replication and repair machinery, is drawing increasing attention as a therapeutic target. We report the crystal structure of the M. tuberculosis β-clamp (Mtbβ-clamp) to 3.0 Å resolution. The protein crystallized in the space group C2221 with cell-dimensions a = 72.7, b = 234.9 & c = 125.1 Å respectively. Mtbβ-clamp is a dimer, and exhibits head-to-tail association similar to other bacterial clamps. Each monomer folds into three domains with similar structures respectively and associates with its dimeric partner through 6 salt-bridges and about 21 polar interactions. Affinity experiments involving a blunt DNA duplex, primed-DNA and nicked DNA respectively show that Mtbβ-clamp binds specifically to primed DNA about 1.8 times stronger compared to the other two substrates and with an apparent Kd of 300 nM. In bacteria like E. coli, the β-clamp is known to interact with subunits of the clamp loader, NAD+ -dependent DNA ligase (LigA) and other partners. We tested the interactions of the Mtbβ-clamp with MtbLigA and the γ-clamp loader subunit through radioactive gel shift assays, size exclusion chromatography, yeast-two hybrid experiments and also functionally. Intriguingly while Mtbβ-clamp interacts in vitro with the γ-clamp loader, it does not interact with MtbLigA unlike in bacteria like E. coli where it does. Modeling studies involving earlier peptide complexes reveal that the peptide-binding site is largely conserved despite lower sequence identity between bacterial clamps. Overall the results suggest that other as-yet-unidentified factors may mediate interactions between the clamp, LigA and DNA in mycobacteria.  相似文献   

6.
The molecular mechanisms underlying sensitivity to alcohol are incompletely understood. Recent research has highlighted the involvement of two presynaptic proteins, Munc18 and Rab3. We have previously characterised biochemically a number of specific Munc18 point mutations including an E466K mutation that augments a direct Rab3 interaction. Here the phenotypes of this and other Munc18 mutations were assessed in alcohol sensitivity and exocytosis using Caenorhabditis elegans. We found that expressing the orthologous E466K mutation (unc-18 E465K) enhanced alcohol sensitivity. This enhancement in sensitivity was surprisingly independent of rab-3. In contrast unc-18 R39C, which decreases syntaxin binding, enhanced sensitivity to alcohol in a manner requiring rab-3. Finally, overexpression of R39C could suppress partially the reduction in neurotransmitter release in rab-3 mutant worms, whereas wild-type or E465K mutants showed no rescue. These data indicate that the epistatic interactions between unc-18 and rab-3 in modulating sensitivity to alcohol are distinct from interactions affecting neurotransmitter release.  相似文献   

7.
Enhanced Chromosome Mobilizing (ECM) plasmids derived from the IncP-1 plasmid R68 were isolated in Escherichia coli K-12 by the same methods which have given similar plasmids such as R68.45 in Pseudomonas aeruginosa. The chromosome mobilizing properties of such plasmids in E. coli were similar to those of R68.45 but while retaining the ability to transfer to P. aeruginosa they did not mobilize the chromosome of that organism. Restriction enzyme analysis of two such plasmids, pMO163 and pMO168, showed that they both possessed an additional segment of DNA. With pMO163, an addition of 0.8 kb is located near the TnA region and is characterized by the cleavage site pattern SmaI-HpaI-PstI-BamHI. For pMO168, the additional DNA segment is located at a different site, about 4.0 kb anti-clockwise from the EcoRI site. It was also characterized by the sites SmaI-(HpaI-PstI)-BamHI. No sequence homology has been found between the additional segments of either pMO163 or pMO168 and IS21 of R68.45. However homology of these additional segments was found with the E. coli K-12 chromosome suggesting that pMO163 and pMO168 arise by the acquisition of a transposable element from the E. coli K-12 chromosome.  相似文献   

8.
The extent and nature of epistatic interactions between mutations are issues of fundamental importance in evolutionary biology. However, they are difficult to study and their influence on adaptation remains poorly understood. Here, we use a systems-level approach to examine epistatic interactions that arose during the evolution of Escherichia coli in a defined environment. We used expression arrays to compare the effect on global patterns of gene expression of deleting a central regulatory gene, crp. Effects were measured in two lineages that had independently evolved for 20,000 generations and in their common ancestor. We found that deleting crp had a much more dramatic effect on the expression profile of the two evolved lines than on the ancestor. Because the sequence of the crp gene was unchanged during evolution, these differences indicate epistatic interactions between crp and mutations at other loci that accumulated during evolution. Moreover, a striking degree of parallelism was observed between the two independently evolved lines; 115 genes that were not crp-dependent in the ancestor became dependent on crp in both evolved lines. An analysis of changes in crp dependence of well-characterized regulons identified a number of regulatory genes as candidates for harboring beneficial mutations that could account for these parallel expression changes. Mutations within three of these genes have previously been found and shown to contribute to fitness. Overall, these findings indicate that epistasis has been important in the adaptive evolution of these lines, and they provide new insight into the types of genetic changes through which epistasis can evolve. More generally, we demonstrate that expression profiles can be profitably used to investigate epistatic interactions.  相似文献   

9.
The site-specific integration of the phage ?CTX genome, which carries the gene for a pore-forming cytotoxin, into the Pseudomonas aeruginosa chromosome was analysed. The 1,167 by integrase gene, int, located immediately upstream of the attachment site, attP, was characterized using plasmid constructs, harbouring the integration functions, and serving as an integration probe in both P. aeruginosa and Escherichia coli. The attP plasmids p1000/p400 in the presence of the int plasmid pIBH and attP-int plasmids pINT/pINTS can be stably integrated into the P. aeruginosa chromosome. Successful recombination between the attP plasmid p1000 and the attB plasmid p5.1, in the presence of the int plasmid pIBH in E. coli HB101 showed that the int gene is active in trans in E. coli. The int gene product was detected as a 43 kDa protein in E. coli maxicells harbouring pINT. Proposed integration arm regions downstream of attP are not necessary for the integration process. pINT and phage ?CTX could be integrated together into P. aeruginosa chromosomal DNA, yielding double integrates.  相似文献   

10.
We recently developed a display method for the directed evolution of integral membrane proteins in the inner membrane of Escherichia coli for higher expression and stability. For the neurotensin receptor 1, a G-protein-coupled receptor (GPCR), we had evolved a mutant with a 10-fold increase in functional expression that largely retains wild-type binding and signaling properties and shows higher stability in detergent-solubilized form. We have now evolved three additional human GPCRs. Unmodified wild-type receptor cDNA was subjected to successive cycles of mutagenesis and fluorescence-activated cell sorting, and functional expression could be increased for all three GPCR targets. We also present a new stability screening method in a 96-well assay format to quickly identify evolved receptors showing increased thermal stability in detergent-solubilized form and rapidly evaluate them quantitatively. Combining the two methods turned out to be very powerful; even for the most challenging GPCR target—the tachykinin receptor NK1, which is hardly expressed in E. coli and cannot be functionally solubilized—receptor mutants that are functionally expressed at 1 mg/l levels in E. coli and are stable in detergent solution could be quickly evolved. The improvements result from cumulative small changes in the receptor sequence. This combinatorial approach does not require preconceived notions for designing mutations. Our results suggest that this method is generally applicable to GPCRs. Existing roadblocks in structural and biophysical studies can now be removed by providing sufficient quantities of correctly folded and stable receptor protein.  相似文献   

11.
Sister chromatid exchange (SCE) in Escherichia coli results in the formation of circular dimer chromosomes, which are converted back to monomers by a compensating exchange at the dif resolvase site. Recombination at dif is site specific and can be monitored by utilizing a density label assay that we recently described. To characterize factors affecting SCE frequency, we analyzed dimer resolution at the dif site in a variety of genetic backgrounds and conditions. Recombination at dif was increased by known hyperrecombinogenic mutations such as polA, dut, and uvrD. It was also increased by a fur mutation, which increased oxidative DNA damage. Recombination at dif was eliminated by a recA mutation, reflecting the role of RecA in SCE and virtually all homologous recombination in E. coli. Interestingly, recombination at dif was reduced to approximately half of the wild-type levels by single mutations in either recB or recF, and it was virtually eliminated when both mutations were present. This result demonstrates the importance of both RecBCD and RecF to chromosomal recombination events in wild-type cells.  相似文献   

12.
13.
14.
15.
Ribosome recycling factor (RRF) is required for release of 70S ribosomes from mRNA on reaching the termination codon for the next cycle of protein synthesis. The RRF-encoding gene (frr) of Pseudomonas aeruginosa PAO1 was functionally cloned by using a temperature-sensitive frr mutant of Escherichia coli and sequenced. The P. aeruginosa frr was mapped at 30 to 32 min of the P. aeruginosa chromosome. The deduced amino acid sequence of RRF showed a 64% identity to that of E. coli RRF. In an assay including E. coli polysome and elongation factor G, purified recombinant RRF of P. aeruginosa released monosomes from polysomes. This is the first case in which an RRF homologue was found to be active in heterogeneous ribosome recycling machinery. The genes for ribosomal protein S2 (rpsB), elongation factor Ts (tsf), and UMP kinase (pyrH) are located upstream of frr. The arrangement of the genes, rpsB-tsf-pyrH-frr, resembles those reported for E. coli and Bacillus subtilis. Even in the cyanobacterium genome, the arrangement pyrH-frr is conserved. Although RRF homologues are found in eukaryotic cells, phylogenetic analysis suggests that they were originally present within the members of the phylogenetic tree of prokaryotic RRF. This finding suggests that the ribosome recycling step catalyzed by RRF is specific for prokaryotic cells and that eukaryotic RRF is required for protein synthesis in organelles, which are believed to be phylogenetically originated from prokaryotes.  相似文献   

16.
The simple reversible intercalating agent isopropyl-OPC (iPr-OPC) induces frameshift-1 mutations in Salmonella typhimurium and Escherichia coli. The mutagenic responses of S. typhimurium and E. coli wild-type strains are not proportional to the amount of drug intercalated into double-stranded nucleic acids in living bacteria; it occurs only above a minimum level of binding. The fact that mismatch-repair-deficient (mutS) as well as adenine-methylation-deficient (dam) E. coli mutants are hypermutable at low concentrations of iPr-OPC suggests that the majority of mutants induced by this intercalating drug occur as mismatch-repairable mutations (or lesions) in the newly synthesized DNA strand close to the replication fork.  相似文献   

17.
The widespread use of antibiotics has caused serious drug resistance. Bacteria that were once easily treatable are now extremely difficult to treat. Endolysin can be used as an alternative to antibiotics for the treatment of drug-resistant bacteria. To analyze the antibacterial activity of the endolysin of phage Bp7(Bp7e), a 489-bp DNA fragment of endolysin Bp7e was PCR-amplified from a phage Bp7 genome and cloned, and then a p ET28a-Bp7e prokaryotic expression vector was constructed. Two amino acids were mutated(L99A, M102E) to construct p ET28a-Bp7Δe, with p ET28a-Bp7e as a template. Phylogenetic analysis suggested that BP7e belongs to a T4-like phage endolysin group. Bp7e and its mutant Bp7Δe were expressed in Escherichia coli BL21(DE3) as soluble proteins. They were purified by affinity chromatography, and then their antibacterial activities were analyzed. The results demonstrated that the recombinant proteins Bp7e and Bp7Δe showed obvious antibacterial activity against Micrococcus lysodeikticus but no activity against Staphylococcus aureus. In the presence of malic acid, Bp7e and Bp7Δe exhibited an effect on most E. coli strains which could be lysed by phage Bp7, but no effect on Salmonella paratyphi or Pseudomonas aeruginosa. Moreover, Bp7Δe with double-site mutations showed stronger antibacterial activity and a broader lysis range than Bp7e.  相似文献   

18.
19.
Four independent mutations were introduced to the Escherichia coli alkaline phosphatase active site, and the resulting enzymes characterized to study the effects of Glu as a metal ligand. The mutations D51E and D153E were created to study the effects of lengthening the carboxyl group by one methylene unit at the metal interaction site. The D51E enzyme had drastically reduced activity and lost one zinc per active site, demonstrating importance of the position of Asp51. The D153E enzyme had an increased kcat in the presence of high concentrations of Mg2+, along with a decreased Mg2+ affinity as compared to the wild-type enzyme. The H331E and H412E enzymes were created to probe the requirement for a nitrogen-containing metal ligand at the Zn1 site. The H331E enzyme had greatly decreased activity, and lost one zinc per active site. In the absence of high concentrations of Zn2+, dephosphorylation occurs at an extremely reduced rate for the H412E enzyme, and like the H331E enzyme, metal affinity is reduced. Except at the 153 position, Glu is not an acceptable metal chelating amino acid at these positions in the E. coli alkaline phosphatase active site.  相似文献   

20.

Background

The accumulation of deleterious mutations can drastically reduce population mean fitness. Self-fertilization is thought to be an effective means of purging deleterious mutations. However, widespread linkage disequilibrium generated and maintained by self-fertilization is predicted to reduce the efficacy of purging when mutations are present at multiple loci.

Methodology/Principal Findings

We tested the ability of self-fertilizing populations to purge deleterious mutations at multiple loci by exposing obligately self-fertilizing populations of Caenorhabditis elegans to a range of elevated mutation rates and found that mutations accumulated, as evidenced by a reduction in mean fitness, in each population. Therefore, purging in obligate selfing populations is overwhelmed by an increase in mutation rate. Surprisingly, we also found that obligate and predominantly self-fertilizing populations exposed to very high mutation rates exhibited consistently greater fitness than those subject to lesser increases in mutation rate, which contradicts the assumption that increases in mutation rate are negatively correlated with fitness. The high levels of genetic linkage inherent in self-fertilization could drive this fitness increase.

Conclusions

Compensatory mutations can be more frequent under high mutation rates and may alleviate a portion of the fitness lost due to the accumulation of deleterious mutations through epistatic interactions with deleterious mutations. The prolonged maintenance of tightly linked compensatory and deleterious mutations facilitated by self-fertilization may be responsible for the fitness increase as linkage disequilibrium between the compensatory and deleterious mutations preserves their epistatic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号