首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral squamous cell carcinoma (OSCC) is a common cancer with poor prognosis and high mortality. The role of CCN5 has attracted a great focus on the regulation of cancer progression. However, the biological function and mechanism of CCN5 in OSCC are still not well elucidated. The current study was designed to determine the effects of CCN5 on OSCC cell proliferation and apoptosis using two OSCC cell lines. Further, LY294002, a PI3K/AKT antagonist, was employed to explore the mechanism underlying the effects of CCN5 in the regulation of OSCC. The results showed that overexpression of CCN5 in TSCCa cells significantly reduced viable cell number, arrested cell cycle, and suppressed cell‐cycle regulators (cyclin D1, cyclin E, and CDK2). CCN5 overexpression increased the apoptotic ratio and Hoechst‐positive cell number, and altered the apoptotic‐related proteins (caspase‐3/9, Bax, and Bcl‐2). However, CCN5 silencing induced opposite effects on cell proliferation and apoptosis in Tca‐8113 cells. In addition, we observed that CCN5 knockdown increased the expression levels of PI3K (p85α and p110α) and phosphorylated AKT at serine 473 (p‐AKT Ser473) in Tca‐8113 cells. Inhibiting PI3K/AKT signaling with LY294002 rescued the apoptotic process in CCN5‐silenced OSCC cells. Finally, xenograft analysis showed that CCN5 represses tumorigenesis of OSCC cells. These findings together suggest that CCN5 functions as a tumor suppressor for OSCC cell development through inactivation of PI3K/AKT signaling pathway, providing a potential candidate for OSCC therapy.  相似文献   

2.
Oral squamous cell carcinoma (OSCC) is a disfiguring malignancy and significantly impacts the quality of patient’s life. Kallikrein-related peptidase 4 (KLK4), which is closely related to cancers, is highly expressed in OSCC. To explore the biological function of KLK4 in OSCC, a KLK4-specific shRNA was used to silence its endogenous expression, and then the migration and invasion of OSCC cells were explored. Results of our study showed that silencing KLK4 inhibited the migration and invasion of OSCC cells. The protein levels of epithelial mesenchymal transition-associated markers and proteases were also altered by KLK4 silencing. Further study showed that the phosphatidylinositol 3-kinase (PI3 K)/protein kinase B (AKT) signaling pathway was involved in the function of KLK4. Treatment with a PI3 K/AKT activator reversed the migration-inhibitory effect of KLK4 shRNA. Our study suggests that KLK4 may contribute to the metastasis of OSCC through the PI3 K/AKT signaling pathway.  相似文献   

3.
Oral squamous cell carcinoma (OSCC) is usually diagnosed at late stages, which leads to high morbidity. There are evidence that chronic inflammation (eg oral lichen planus [OLP]) was a risk factor of OSCC, but often misdiagnosed or ignored until invasion and metastasis. By applying precision medicine, the molecular microenvironment variations and relevant biomarkers for the malignant transformation from OLP to OSCC can be fully investigated. Several studies pointed out that the metabolic pathway were suppressed in OSCC. However, it remains unclear how the systemic profile of the metabolites change during the malignant transformation. In this study, we examined and compared the mucosa samples from 11 healthy individuals, 10 OLP patients and 21 OSCC patients. Based on the results, succinate, a key metabolite of the tricarboxylic acid cycle pathway, was accumulated in the primary cultured precancerous OLP keratinocytes and OSCC cells. Then, we found that succinate activated the hypoxia‐inducible factor‐1 alpha (HIF‐1α) pathway and induced apoptosis, which could also be up‐regulated by the tumour suppressor lncRNA MEG3. These results suggested the critical roles of succinate and MEG3 in the metabolic changes during malignant transformation from OLP to OSCC, which indicated that succinate, HIF1α and downstream proteins might serve as new biomarkers of precancerous OLP for early diagnosis and therapeutic monitoring. In addition, succinate or its prodrugs might become a potential therapy for the prevention or treatment of OSCC.  相似文献   

4.
This study aimed to explore new therapeutic targets to improve the survival rate of patients with oral squamous cell carcinoma (OSCC).MiR-210-3p, EphrinA3 and EMT related indices were evaluated in OSCC tissues and cell lines. In addition, the relationship between differential EphrinA3 expression and tumour progression was explored through molecular biology techniques, in vitro functional experiments and tumour xenotransplantation models. The expression of EphrinA3 (rs = −0.719, P < .05) and E-cadherin (rs = −0.856, P < .05) was negatively correlated with the pathological grading in OSCC tissues. Protein clustering shows EphrinA3 may be associated with tumour progression. EphrinA3 also can regulate the biological behaviour of oral cancer cells. And it regulates the EMT by the PI3K/AKT signalling pathway. MiR-210-3p targeted the gen EFNA3. Up-regulation of miR-210-3p expression can decrease the expression of EphrinA3 and further to influence the biological behaviour of OSCC. The miR-210-3p-EphrinA3-PI3K/AKT signalling axis plays an important role in the progress of OSCC. EphrinA3 may serve as a novel target for oral cancer treatment.  相似文献   

5.
There is increasing evidence that the core clock gene Period 1 (PER1) plays important roles in the formation of various tumors. However, the biological functions and mechanism of PER1 in promoting tumor progression remain largely unknown. Here, we discovered that PER1 was markedly downregulated in oral squamous cell carcinoma (OSCC). Then, OSCC cell lines with stable overexpression, knockdown, and mutation of PER1 were established. We found that PER1 overexpression significantly inhibited glycolysis, glucose uptake, proliferation, and the PI3K/AKT pathway in OSCC cells. The opposite effects were observed in PER1-knockdown OSCC cells. After treatment of PER1-overexpressing OSCC cells with an AKT activator or treatment of PER1-knockdown OSCC cells with an AKT inhibitor, glycolysis, glucose uptake, and proliferation were markedly rescued. In addition, after treatment of PER1-knockdown OSCC cells with a glycolysis inhibitor, the increase in cell proliferation was significantly reversed. Further, coimmunoprecipitation (Co-IP) and cycloheximide (CHX) chase experiment demonstrated that PER1 can bind with RACK1 and PI3K to form the PER1/RACK1/PI3K complex in OSCC cells. In PER1-overexpressing OSCC cells, the abundance of the PER1/RACK1/PI3K complex was significantly increased, the half-life of PI3K was markedly decreased, and glycolysis, proliferation, and the PI3K/AKT pathway were significantly inhibited. However, these effects were markedly reversed in PER1-mutant OSCC cells. In vivo tumorigenicity assays confirmed that PER1 overexpression inhibited tumor growth while suppressing glycolysis, proliferation, and the PI3K/AKT pathway. Collectively, this study generated the novel findings that PER1 suppresses OSCC progression by inhibiting glycolysis-mediated cell proliferation via the formation of the PER1/RACK1/PI3K complex to regulate the stability of PI3K and the PI3K/AKT pathway-dependent manner and that PER1 could potentially be a valuable therapeutic target in OSCC.Subject terms: Oral cancer, Cell growth, RNAi  相似文献   

6.
The biological function and underlying mechanism of miR‐1258 has seldom been investigated in cancer progression, including in oral squamous cell carcinoma (OSCC). In the current study, we revealed that the expression level of miR‐1258 was significantly down‐regulated in OSCC tissues and cell lines. Restoration of miR‐1258 decreased OSCC cell growth and invasion. The luciferase and Western blot assays revealed that SP1 protein was a downstream target of miR‐1258. Overexpression of SP1 dismissed miR‐1258’s effect on cell growth and invasion. We also revealed that c‐Myb inhibited miR‐1258 by directly binding at its promoter. In addition, miR‐1258 inhibited PI3K/AKT and ERK signalling pathway activity. Taken together, these findings demonstrated that miR‐1258 may function as a tumour‐suppressive micorRNA in OSCC and suggested that miR‐1258 may be a potential therapeutic target for OSCC patients.  相似文献   

7.
Oral lichen planus (OLP) is a relatively common inflammatory disease. Several reports of oral squamous cell carcinomas (OSCC) developing in the ground of previous OLP lesions exist in the current medical literature. Hence, there is a debate concerning the possible premalignant nature of OLP. The studies that examined the malignant potential of OLP for many years were mainly observational and were seeking to detect the percentage of OLP patients that developed OSCC. The results of these studies varied significantly with reported percents of malignant transformation of OLP ranging from 0 to 12.5%. In recent years the number of OLP studies that investigate molecular biomarkers identified in cancer is on the rise. This article is an update of the molecular pathways identified in OLP that could be suggestive of a malignant potential of this condition.  相似文献   

8.
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.  相似文献   

9.
10.
Oral squamous cell carcinoma (OSCC) is a highly lethal cancer in the world, and the prognosis of OSCC is poor with a 60% 5-year survival rate in recent decades. Here, we introduced a novel secretory and acid glycoprotein with cysteine rich (secreted protein acidic and rich in cysteine, SPARC), which is correlated with the worst pattern of invasion (WPOI) and prognosis of OSCC. SPARC expression levels were measured in OSCC tissues and normal tissues using quantitative polymerase chain reaction and immunohistochemistry. The influence of SPARC on cell proliferation was examined by cell counting kit-8, colony formation, and Edu tests. Then, the effect of SPARC on the metastasis of OSCC cells was detected by wound healing and transwell migration assays. Next, the biologic characteristics of SPARC shared by STRING were analyzed. Furthermore, the underlying mechanisms were confirmed by western blot analysis. SPARC revealed higher expression in OSCC tissues than nontumor tissues. Higher SPARC expression was correlated with poorer tumor differentiation, poorer WPOI pattern, and significantly and shorter overall survival. Knockdown SPARC significantly restrained OSCC cell growth, migration, and invasion. In addition, bioinformatics analysis found SPARC had a coexpression network with the platelet-derived growth factor-B (PDGFB) and PI3K/AKT signaling pathways with minimal false discovery rate. Furthermore, SPARC promotes OSCC cells metastasis by regulating the expressions of PDGFB, PDGFRβ, p-PDGFRβ , and the PI3K/AKT pathway. Higher SPARC expression was positively correlated with poor WPOI and differentiation in OSCC. SPARC activates the PI3K/AKT/PDGFB/PDGFRβ axis to promote proliferation and metastasis by OSCC cell lines. Therefore, SPARC may be a potential therapeutic target for patients with OSCC.  相似文献   

11.
Cancer being the leading cause of mortality has become a great threat worldwide. Current cancer therapeutics lack specificity and have side effects due to a lack of understanding of the molecular mechanisms and signalling pathways involved in carcinogenesis. In recent years, researchers have been focusing on several signalling pathways to pave the way for novel therapeutics. The PTEN/PI3K/AKT pathway is one of the important pathways involved in cell proliferation and apoptosis, leading to tumour growth. In addition, the PTEN/PI3K/AKT axis has several downstream pathways that could lead to tumour malignancy, metastasis and chemoresistance. On the other hand, microRNAs (miRNAs) are important regulators of various genes leading to disease pathogenesis. Hence studies of the role of miRNAs in regulating the PTEN/PI3K/AKT axis could lead to the development of novel therapeutics for cancer. Thus, in this review, we have focused on various miRNAs involved in the carcinogenesis of various cancer via the PTEN/PI3K/AKT axis.  相似文献   

12.
Oral submucosal fibrosis (OSF) is one of the pre-cancerous lesions of oral squamous cell carcinoma (OSCC). Its malignant rate is increasing, but the mechanism of malignancy is not clear. We previously have elucidated the long non-coding RNA (lncRNA) expression profile during OSF progression at the genome-wide level. However, the role of lncRNA ADAMTS9-AS2 in OSF progression via extracellular communication remains unclear. lncRNA ADAMTS9-AS2 is down-regulated in OSCC tissues compared with OSF and normal mucous tissues. Low ADAMTS9-AS2 expression is associated with poor overall survival. ADAMTS9-AS2 is frequently methylated in OSCC tissues, but not in normal oral mucous and OSF tissues, suggesting tumour-specific methylation. Functional studies reveal that exosomal ADAMTS9-AS2 suppresses OSCC cell growth, migration and invasion in vitro. Mechanistically, exosomal ADAMTS9-AS2 inhibits AKT signalling pathway and regulates epithelial-mesenchymal transition markers. Through profiling miRNA expression profile regulated by exosomal ADAMTS9-AS2, significantly enriched pathways include metabolic pathway, PI3K-Akt signalling pathway and pathways in cancer, indicating that exosomal ADAMTS9-AS2 exerts its functions through interacting with miRNAs during OSF progression. Thus, our findings highlight the crucial role of ADAMTS9-AS2 in the cell microenvironment during OSF carcinogenesis, which is expected to become a marker for early diagnosis of OSCC.  相似文献   

13.
Alternative splicing (AS) is critically associated with tumorigenesis and patient's prognosis. Here, we systematically analyzed survival-associated AS signatures in oral squamous cell carcinoma (OSCC) and evaluated their prognostic predictive values. Survival-related AS events were identified by univariate and multivariate Cox regression analyses using OSCC data from the TCGA head neck squamous cell carcinoma data set. The Percent Spliced In calculated by SpliceSeq from 0 to 1 was used to quantify seven types of AS events. A predictive model based on AS events was constructed by least absolute shrinkage and selection operator Cox regression assay and further validated using a training-testing cohort design. Patient survival was estimated using the Kaplan–Meier method and compared with Log-rank test. The receiver operating characteristics curve area under the curves was used to evaluate the predictive abilities of these predictive models. Furthermore, gene–gene interaction networks and the splicing factors (SFs)-AS regulatory network was generated by Cytoscape. A total of 825 survival-related AS events within 719 genes were identified in OSCC samples. The integrative predictive model was better at predicting outcomes of patients as compared to those models built with the individual AS event. The predictive model based on three AS-related genes also effectively predicted patients’ survival. Moreover, seven survival-related SFs were detected in OSCC including RBM4, HNRNPD, and HNRNPC, which have been linked to tumorigenesis. The SF-AS network revealed a significant correlation between survival-related AS genes and these SFs. Our findings revealed a systemic portrait of survival-associated AS events and the splicing network in OSCC, suggesting that AS events might serve as novel prognostic biomarkers and therapeutic targets for OSCC.  相似文献   

14.
Phosphatidylinositol 3 kinase (PI3K)/AKT (also called protein kinase B, PKB) signalling regulates various cellular processes, such as apoptosis, cell proliferation, the cell cycle, protein synthesis, glucose metabolism, and telomere activity. Corneal epithelial cells (CECs) are the outermost cells of the cornea; they maintain good optical performance and act as a physical and immune barrier. Various growth factors, including epidermal growth factor receptor (EGFR) ligands, insulin-like growth factor 1 (IGF1), neurokinin 1 (NK-1), and insulin activate the PI3K/AKT signalling pathway by binding their receptors and promote antiapoptotic, anti-inflammatory, proliferative, and migratory functions and wound healing in the corneal epithelium (CE). Reactive oxygen species (ROS) regulate apoptosis and inflammation in CECs in a concentration-dependent manner. Extreme environments induce excess ROS accumulation, inhibit PI3K/AKT, and cause apoptosis and inflammation in CECs. However, at low or moderate levels, ROS activate PI3K/AKT signalling, inhibiting apoptosis and stimulating proliferation of healthy CECs. Diabetes-associated hyperglycaemia directly inhibit PI3K/AKT signalling by increasing ROS and endoplasmic reticulum (ER) stress levels or suppressing the expression of growth factors receptors and cause diabetic keratopathy (DK) in CECs. Similarly, hyperosmolarity and ROS accumulation suppress PI3K/AKT signalling in dry eye disease (DED). However, significant overactivation of the PI3K/AKT signalling pathway, which mediates inflammation in CECs, is observed in both infectious and noninfectious keratitis. Overall, upon activation by growth factors and NK-1, PI3K/AKT signalling promotes the proliferation, migration, and anti-apoptosis of CECs, and these processes can be regulated by ROS in a concentration-dependent manner. Moreover, PI3K/AKT signalling pathway is inhibited in CECs from individuals with DK and DED, but is overactivated by keratitis.Subject terms: Growth factor signalling, Apoptosis, Extracellular matrix  相似文献   

15.
Background: Clinical studies and genetic analyses have revealed that juvenile myelomonocytic leukemia (JMML) is caused by somatic and/or germline mutations of genes involved in the RAS/MAPK signalling pathway. Given the vastly different clinical prognosis among individual patients that have had this disease, mutations in genes of other pathways may be involved. Methods: In this study, we conducted whole-exome and cancer-panel sequencing analyses on a bone marrow sample from a 2-year old juvenile myelomonocytic leukemia patient. We also measured the microRNA profile of the same patient’s bone marrow sample and the results were compared with the normal mature monocytic cells from the pooled peripheral blood. Results: We identified additional novel mutations in the PI3K/AKT pathway and verified with a cancer panel targeted sequencing. We have confirmed the previously tested PTPN11 gene mutation (exon 3 181G>T) in the same sample and identified new nonsynonymous mutations in NTRK1, HMGA2, MLH3, MYH9 and AKT1 genes. Many of the microRNAs found to be differentially expressed are known to act as oncogenic MicroRNAs (onco-MicroRNAs or oncomiRs), whose target genes are enriched in the PI3K/AKT signalling pathway. Conclusions: Our study suggests an alternative mechanism for JMML pathogenesis in addition to RAS/MAPK pathway. This discovery may provide new genetic markers for diagnosis and new therapeutic targets for JMML patients in the future.  相似文献   

16.
Oral squamous cell carcinoma (OSCC) may arise from potentially malignant oral lesions. All‐trans retinoic acid (atRA), which plays a role in cell growth and differentiation, has been studied as a possible chemotherapeutic agent in the prevention of this progression. While the mechanism by which atRA suppresses cell growth has not been completely elucidated, it is known that homeobox genes are atRA targets. To determine if these genes are involved in the atRA‐mediated OSCC growth inhibition, PCR array was performed to evaluate the expression of 84 homeobox genes in atRA‐sensitive SCC‐25 cells compared to atRA‐resistant SCC‐9 cells following 7 days with atRA treatment. Results showed that the expression of 8 homeobox genes was downregulated and expression of 4 was upregulated in SCC‐25 cells but not in SCC‐9 cells. Gene expression levels were confirmed for seven of these genes by RT‐qPCR. Expression of three genes that showed threefold downregulation was evaluated in SCC‐25 cells treated with atRA for 3, 5, and 7 days. Three different patterns of atRA‐dependent gene expression were observed. ALX1 showed downregulation only on day 7. DLX3 showed reduced expression on day 3 and further reduced on day 7. TLX1 showed downregulation only on days 5 and 7. Clearly the expression of homeobox genes is modulated by atRA in OSCC cell lines. However, the time course of this modulation suggests that these genes are not direct targets of atRA mediating OSCC growth suppression. Instead they appear to act as downstream effectors of atRA signaling. J. Cell. Biochem. 111: 1437–1444, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

18.
Previous studies showed that lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is an important participant in tumor progression. However, its prognostic value and functional mechanism in oral squamous cell carcinoma (OSCC) are still unclear. In this study, we analyzed LGALS3BP expression in OSCC tissues via Oncomine databases and immunohistochemical staining. LGALS3BP was significantly up-regulated in OSCC tumor tissues. IHC analysis showed that LGALS3BP was predominantly expressed in tumor cells and correlated with poor clinical characteristics. In addition, high LGALS3BP expression predicted poor clinical outcomes and multivariate analysis revealed that LGALS3BP expression was as an independent prognostic factor for OS, DFS and RFS (p < .0001, p = .002, p = .002). Mechanically, LGALS3BP regulated OSCC proliferation and migration via PI3K/AKT pathways, which was abrogated by PI3K inhibitor LY294002 in a dose-dependent manner. Our results suggested that LGALS3BP could be served as a novel independent prognostic factor as well as a potential therapeutic target for OSCC treatment.  相似文献   

19.

Background

Oncogenic activation of the PI3K signalling pathway plays a pivotal role in the development of glioblastoma multiforme (GBM). A central node in PI3K downstream signalling is controlled by the serine-threonine kinase AKT1. A somatic mutation affecting residue E17 of the AKT1 gene has recently been identified in breast and colon cancer. The E17K change results in constitutive AKT1 activation, induces leukaemia in mice, and accordingly, may be therapeutically exploited to target the PI3K pathway. Assessing whether AKT1 is activated by somatic mutations in GBM is relevant to establish its role in this aggressive disease.

Methodology/Principal Findings

We performed a systematic mutational analysis of the complete coding sequence of the AKT1 gene in a panel of 109 tumor GBM samples and nine high grade astrocytoma cell lines. However, no somatic mutations were detected in the coding region of AKT1.

Conclusions/Significance

Our data indicate that in GBM oncogenic deregulation of the PI3K pathway does not involve somatic mutations in the coding region of AKT1.  相似文献   

20.
Pancreatic cancer is a multiple genetic disorder with many mutations identified during the progression. Two mouse pancreatic cancer cell lines were established which showed different phenotype in vivo: a non-metastatic cell line, Panc02, and a highly metastatic cell line, Panc02-H7, a derivative of Panc02. In order to investigate whether the genetic mutations of key genes in pancreatic cancer such as KRAS, TP53 (p53), CDKN2A (p16), SMAD4, ZIP4, and PDX-1 contribute to the phenotypic difference of these two mouse pancreatic cancer cells, we sequenced the exonic regions of these key genes in both cell lines and in the normal syngeneic mouse pancreas and compared them with the reference mouse genome sequence. The exons of KRAS, SMAD4, CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes were amplified and the genotype of these genes was determined by Sanger sequencing. The sequences were analyzed with Sequencher software. A mutation in SMAD4 was identified in both cell lines. This homozygote G to T mutation in the first position of codon 174 (GAA) generated a stop codon resulting in the translation of a truncated protein. Further functional analysis indicates that different TGF-β/SMAD signaling pathways were involved in those two mouse cell lines, which may explain the phonotypic difference between the two cells. A single nucleotide polymorphism (SNP) in KRAS gene (TAT to TAC at codon 32) was also identified in the normal pancreas DNA of the syngenic mouse and in both derived tumoral Panc02 and Panc02-H7 cells. No mutation or SNP was found in CDKN2A (p16), TP53 (p53), ZIP4, and PDX-1 genes in these two cell lines. The absence of mutations in genes such as KRAS, TP53, and CDKN2A, which are considered as key genes in the development of human pancreatic cancer suggests that SMAD4 might play a central and decisive role in mouse pancreatic cancer. These results also suggest that other mechanisms are involved in the substantial phenotypic difference between these two mouse pancreatic cancer cell lines. Further studies are warranted to elucidate the molecular pathways that lead to the aggressive metastatic potential of Panc02-H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号