首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 ± 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa , version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.  相似文献   

2.
A draft sequence of the chicken genome will be available by early 2004. This event conveniently marks the start of the second century of poultry genetics, coming 100 years after the use of the chicken to demonstrate Mendelian inheritance in animals by William Bateson. How will the second, post-genomic century of poultry genetics differ from the first? A whole genome shotgun (WGS) approach is being used to obtain the chicken sequence, with the goal of generating approximately six-fold coverage of the genome. Bacterial artificial chromosome (BAC) and fosmid clone end sequences, along with a BAC contig map integrated with genetic linkage and radiation hybrid maps, will form the platform for assembly of the WGS data. Rapid progress in global analysis of chicken gene expression patterns is also being made. Comparative genomics will link these new discoveries to the knowledge base for all other animal species. It's hoped that the genome sequence will also provide common ground on which to unite studies of the chicken as a model species with those aimed at agriculturally-relevant applications. The current status of chicken genomics will be assessed with projections for its near and long term future.  相似文献   

3.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

4.
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC‐by‐BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high‐resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high‐resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome‐scale analysis of repetitive sequences and revealed a ~800‐kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone‐by‐clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC‐contig physical map and validate sequence assembly on a chromosome‐arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome‐by‐chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules.  相似文献   

5.

Background

Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.

Result

To develop such valuable resources in common carp (Cyprinus carpio), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.

Conclusion

BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.  相似文献   

6.
SUMMARY: We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. MOTIVATION: Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.  相似文献   

7.
Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought‐prone climates, and a primary source of protein in sub‐Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K‐499‐35 include a whole‐genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi‐parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited‐input small‐holder farming and climate stress.  相似文献   

8.
A better understanding of the genotype–phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups.  相似文献   

9.
Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical “contig” maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning ∼10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual “BAC-HAPPY-mapping” to convert BAC landing data into BAC linkage contigs is possible.  相似文献   

10.
Reference sequences are sequences that are used for public consultation, and therefore must be of high quality. Using the whole‐genome shotgun/next‐generation sequencing approach, many genome sequences of complex higher plants have been generated in recent years, and are generally considered reference sequences. However, none of these sequences has been experimentally evaluated at the whole‐genome sequence assembly level. Rice has a relatively simple plant genome, and the genome sequences for its two sub‐species obtained using different sequencing approaches were published approximately 10 years ago. This provides a unique system for a case study to evaluate the qualities and utilities of published plant genome sequences. We constructed a robust BAC physical map embedding a large number of BAC end sequences forrice variety 93–11. Through BAC end sequence alignments and tri‐assembly comparisons of the 93–11 physical map and the two reference sequences, we found that the Nipponbare reference sequence generated using the clone‐by‐clone approach has a high quality but still contains small artifact inversions and missing sequences. In contrast, the 93–11 reference sequence generated using the whole‐genome shotgun approach contains many large and varied assembly errors, such as inversions, duplications and translocations, as well as missing sequences. The 93–11 physical map provides an invaluable resource for evaluation and improvements toward completion of both Nipponbare and 93–11 reference sequences.  相似文献   

11.
Bread wheat (Triticum aestivum L.) is the most important staple food crop for 35% of the world's population. International efforts are underway to facilitate an increase in wheat production, of which the International Wheat Genome Sequencing Consortium (IWGSC) plays an important role. As part of this effort, we have developed a sequence‐based physical map of wheat chromosome 6A using whole‐genome profiling (WGP?). The bacterial artificial chromosome (BAC) contig assembly tools fingerprinted contig (fpc ) and linear topological contig (ltc ) were used and their contig assemblies were compared. A detailed investigation of the contigs structure revealed that ltc created a highly robust assembly compared with those formed by fpc . The ltc assemblies contained 1217 contigs for the short arm and 1113 contigs for the long arm, with an L50 of 1 Mb. To facilitate in silico anchoring, WGP? tags underlying BAC contigs were extended by wheat and wheat progenitor genome sequence information. Sequence data were used for in silico anchoring against genetic markers with known sequences, of which almost 79% of the physical map could be anchored. Moreover, the assigned sequence information led to the ‘decoration’ of the respective physical map with 3359 anchored genes. Thus, this robust and genetically anchored physical map will serve as a framework for the sequencing of wheat chromosome 6A, and is of immediate use for map‐based isolation of agronomically important genes/quantitative trait loci located on this chromosome.  相似文献   

12.
Whole-genome sequencing of the soybean (Glycine max (L.) Merr. 'Williams 82') has made it important to integrate its physical and genetic maps. To facilitate this integration of maps, we screened 3290 microsatellites (SSRs) identified from BAC end sequences of clones comprising the 'Williams 82' physical map. SSRs were screened against 3 mapping populations. We found the AAT and ACT motifs produced the greatest frequency of length polymorphisms, ranging from 17.2% to 32.3% and from 11.8% to 33.3%, respectively. Other useful motifs include the dinucleotide repeats AG, AT, and AG, with frequency of length polymorphisms ranging from 11.2% to 18.4% (AT), 12.4% to 20.6% (AG), and 11.3% to 16.4% (GT). Repeat lengths less than 16 bp were generally less useful than repeat lengths of 40-60 bp. Two hundred and sixty-five SSRs were genetically mapped in at least one population. Of the 265 mapped SSRs, 60 came from BAC singletons not yet placed into contigs of the physical map. One hundred and ten originated in BACs located in contigs for which no genetic map location was previously known. Ninety-five SSRs came from BACs within contigs for which one or more other BACs had already been mapped. For these fingerprinted contigs (FPC) a high percentage of the mapped markers showed inconsistent map locations. A strategy is introduced by which physical and genetic map inconsistencies can be resolved using the preliminary 4x assembly of the whole genome sequence of soybean.  相似文献   

13.
For the vast majority of species – including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.  相似文献   

14.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

15.
DNA fingerprints and end sequences from bacterial artificial chromosomes (BACs) from two new libraries were generated to improve the first generation integrated physical and genetic map of the rainbow trout (Oncorhynchus mykiss) genome. The current version of the physical map is composed of 167,989 clones of which 158,670 are assembled into contigs and 9,319 are singletons. The number of contigs was reduced from 4,173 to 3,220. End sequencing of clones from the new libraries generated a total of 11,958 high quality sequence reads. The end sequences were used to develop 238 new microsatellites of which 42 were added to the genetic map. Conserved synteny between the rainbow trout genome and model fish genomes was analyzed using 188,443 BAC end sequence (BES) reads. The fractions of BES reads with significant BLASTN hits against the zebrafish, medaka, and stickleback genomes were 8.8%, 9.7%, and 10.5%, respectively, while the fractions of significant BLASTX hits against the zebrafish, medaka, and stickleback protein databases were 6.2%, 5.8%, and 5.5%, respectively. The overall number of unique regions of conserved synteny identified through grouping of the rainbow trout BES into fingerprinting contigs was 2,259, 2,229, and 2,203 for stickleback, medaka, and zebrafish, respectively. These numbers are approximately three to five times greater than those we have previously identified using BAC paired ends. Clustering of the conserved synteny analysis results by linkage groups as derived from the integrated physical and genetic map revealed that despite the low sequence homology, large blocks of macrosynteny are conserved between chromosome arms of rainbow trout and the model fish species.  相似文献   

16.
A physical map of the bovine genome   总被引:1,自引:1,他引:0       下载免费PDF全文

Background

Cattle are important agriculturally and relevant as a model organism. Previously described genetic and radiation hybrid (RH) maps of the bovine genome have been used to identify genomic regions and genes affecting specific traits. Application of these maps to identify influential genetic polymorphisms will be enhanced by integration with each other and with bacterial artificial chromosome (BAC) libraries. The BAC libraries and clone maps are essential for the hybrid clone-by-clone/whole-genome shotgun sequencing approach taken by the bovine genome sequencing project.

Results

A bovine BAC map was constructed with HindIII restriction digest fragments of 290,797 BAC clones from animals of three different breeds. Comparative mapping of 422,522 BAC end sequences assisted with BAC map ordering and assembly. Genotypes and pedigree from two genetic maps and marker scores from three whole-genome RH panels were consolidated on a 17,254-marker composite map. Sequence similarity allowed integrating the BAC and composite maps with the bovine draft assembly (Btau3.1), establishing a comprehensive resource describing the bovine genome. Agreement between the marker and BAC maps and the draft assembly is high, although discrepancies exist. The composite and BAC maps are more similar than either is to the draft assembly.

Conclusion

Further refinement of the maps and greater integration into the genome assembly process may contribute to a high quality assembly. The maps provide resources to associate phenotypic variation with underlying genomic variation, and are crucial resources for understanding the biology underpinning this important ruminant species so closely associated with humans.  相似文献   

17.
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.  相似文献   

18.
Fusarium graminearum is the primary causal pathogen of Fusarium head blight of wheat and barley. To accelerate genomic analysis of F. graminearum, we developed a bacterial artificial chromosome (BAC)-based physical map and integrated it with the genome sequence and genetic map. One BAC library, developed in the HindIII restriction enzyme site, consists of 4608 clones with an insert size of approximately 107 kb and covers about 13.5 genome equivalents. The other library, developed in the BamHI restriction enzyme site, consists of 3072 clones with an insert size of approximately 95 kb and covers about 8.0 genome equivalents. We fingerprinted 2688 clones from the HindIII library and 1536 clones from the BamHI library and developed a physical map of F. graminearum consisting of 26 contigs covering 39.2 Mb. Comparison of our map with the F. graminearum genome sequence showed that the size of our physical map is equivalent to the 36.1 Mb of the genome sequence. We used 31 sequence-based genetic markers, randomly spaced throughout the genome, to integrate the physical map with the genetic map. We also end-sequenced 17 BamHI BAC clones and identified 4 clones that spanned gaps in the genome sequence. Our new integrated map is highly reliable and useful for a variety of genomics studies.  相似文献   

19.
Generating a contiguous, ordered reference sequence of a complex genome such as hexaploid wheat (2n = 6x = 42; approximately 17 GB) is a challenging task due to its large, highly repetitive, and allopolyploid genome. In wheat, ordering of whole‐genome or hierarchical shotgun sequencing contigs is primarily based on recombination and comparative genomics‐based approaches. However, comparative genomics approaches are limited to syntenic inference and recombination is suppressed within the pericentromeric regions of wheat chromosomes, thus, precise ordering of physical maps and sequenced contigs across the whole‐genome using these approaches is nearly impossible. We developed a whole‐genome radiation hybrid (WGRH) resource and tested it by genotyping a set of 115 randomly selected lines on a high‐density single nucleotide polymorphism (SNP) array. At the whole‐genome level, 26 299 SNP markers were mapped on the RH panel and provided an average mapping resolution of approximately 248 Kb/cR1500 with a total map length of 6866 cR1500. The 7296 unique mapping bins provided a five‐ to eight‐fold higher resolution than genetic maps used in similar studies. Most strikingly, the RH map had uniform bin resolution across the entire chromosome(s), including pericentromeric regions. Our research provides a valuable and low‐cost resource for anchoring and ordering sequenced BAC and next generation sequencing (NGS) contigs. The WGRH developed for reference wheat line Chinese Spring (CS‐WGRH), will be useful for anchoring and ordering sequenced BAC and NGS based contigs for assembling a high‐quality, reference sequence of hexaploid wheat. Additionally, this study provides an excellent model for developing similar resources for other polyploid species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号