首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Plasma concentrations of luteinizing hormone (LH), prolactin and testosterone, and pituitary content of LH and prolactin, were measured in free-living starlings, Sturnus vulgaris , from hatching until 12 weeks of age.
Plasma LH concentrations were elevated in both sexes until four days after hatching, then they decreased. Throughout the period, plasma LH levels were low compared to those in breeding adults but were comparable to levels in post-breeding photorefractory adults. Pituitary LH content increased until 12 days after hatching, but this increase was due to physical growth during this period. Plasma prolactin concentration and pituitary prolactin content increased dramatically during the nestling period. The increase in pituitary prolactin content was in excess of that accounted for by increasing size. Plasma prolactin remained high during the immediate post-fledging period, but had started to decrease by 12 weeks after hatching. Plasma testosterone concentrations were lower than those in breeding adults, but generally higher than in post-breeding photorefractory adults. The gonads of both sexes remained regressed.
These results suggest that the reproductive system of nestling and juvenile starlings is in a similar state to that of post-breeding photorefractory adult starlings. The comparatively high levels of testosterone may reflect involvement in sexual differentiation.  相似文献   

3.
The effects of gonadotropin-releasing hormone agonist (GnRHa) on plasma levels of follicle-stimulating hormone (Fsh) and luteinising hormone (Lh) are reported for female greater amberjack Seriola dumerili with post-vitellogenic ovarian oocytes. Five females were implanted with pellets containing GnRHa (600 μg kg−1 body weight), while five other females were injected with saline. All females implanted with GnRHa-containing pellets ovulated 36–42 h post-implantation. The GnRHa implants elevated Lh, but not Fsh plasma levels within 42 h of GnRHa administration.  相似文献   

4.
In the zebrafish model, the ontogenic expression profiles of all pituitary hormones have been reported except gonadotropins, partly because they are not supposed to be expressed in the embryonic stage. The spatiotemporal expression patterns of gonadotropins, namely follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), in this species therefore remain largely unknown. As the master hormones controlling reproduction, the information on this issue would be valuable for understanding the roles of gonadotropins in early sexual development. Using double-colored fluorescent in situ hybridization (FISH) and real-time quantitative PCR (qPCR), this study was undertaken to analyze the ontogenic expression patterns of FSHbeta (fshb) and LHbeta (lhb) subunits in the zebrafish pituitary, with particular emphasis on the stage of sexual differentiation (~25-30 dpf [days postfertilization]) and puberty onset (~45 dpf). As a control, growth hormone (gh) was also examined throughout the study. The zebrafish were collected at different time points of early development, including 4, 5, 6, 8, 10, 13, 16, 19, 22, 25, 28, 38, 48, and 53 dpf. The head of each fish, including the brain and pituitary, was sampled for double-colored FISH analysis, whereas the body was fixed for histological examination of sex and gonadal developmental stage. Our results showed that the expression of fshb started much earlier than that of lhb, with its mRNA signal detectable (~2-3 cells per pituitary) shortly after hatching (4 dpf). In contrast, lhb expression became detectable much later, at the time of sex differentiation (~25 dpf). In female zebrafish, the first morphological sign for puberty is the first wave of follicle transition from the primary growth to previtellogenic stage, which occurs around 45 dpf and is marked by the appearance of cortical alveoli in the oocytes. Interestingly, the number of lhb-expressing cells was very low (~5-6 cells per pituitary) before this transition but increased dramatically during and after the transition. In contrast, the expression of fshb was abundant before puberty, with only a slight increase in cell number during puberty onset. The increased expression of fshb and lhb at puberty was also supported by real-time qPCR analysis at the single pituitary level. Interestingly, the fshb-expressing cells changed their spatial distribution significantly during puberty, from a predominantly peripheral to a central location. As the control, the expression of gh was abundant throughout prepubertal and pubertal periods. Our results strongly suggest an important role for Lh at the puberty onset of female zebrafish, similar to the situation in mammals, and its expression could be a sign for puberty at the pituitary level. However, the significance of the location change of Fsh cells during this period will be interesting to investigate.  相似文献   

5.
In Xenopus laevis frogs, sex differences in adult laryngeal synapses contribute to sex differences in vocal behavior. This study explores the development of sex differences in types of neuromuscular synapses and the development and hormone regulation of sex differences in transmitter release. Synapses in the juvenile larynx have characteristics not found in adults: juvenile muscle fibers can produce subthreshold or suprathreshold potentials in response to the same strength of nerve stimulation and can also produce multiple spikes to a single nerve stimulus. Juvenile laryngeal muscle also contains the same synapse types (I, II, and III) as are found in adult laryngeal muscle. The distribution of laryngeal synapse types in juveniles is less sexually dimorphic than the distribution in adults. Analysis of quantal content indicates that laryngeal synapses characteristically release low amounts of transmitter prior to sexual differentiation. Quantal content values from male and female juveniles are similar to values for adult males and are lower than values for adult females. When juveniles are gonadectomized and treated with exogenous estrogen, quantal content values increase significantly, suggesting that this hormone may increase transmitter release at laryngeal synapses during development. Gonadectomy alone does not affect quantal content of laryngeal synapses in either sex. Androgen treatment decreases quantal content in juvenile females but not males; the effect is opposite to and smaller than that of estrogen. Thus, muscle fiber responses to nerve stimulation and transmitter release are not sexually dimorphic in juvenile larynges. Transmitter release is strengthened, or feminized, by the administration of estradiol, an ovarian steroid hormone. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Recent experiments from our laboratory are consistent with the idea that hypothalamic astrocytes are critical components of the central nervous system (CNS) mediated estrogen positive feedback mechanism. The "astrocrine hypothesis" maintains that ovarian estradiol rapidly increases free cytoplasmic calcium concentrations ([Ca(2+)](i)) that facilitate progesterone synthesis in astrocytes. This hypothalamic neuroprogesterone along with the elevated estrogen from the ovaries allows for the surge release of gonadotropin-releasing hormone (GnRH) that triggers the pituitary luteinizing hormone (LH) surge. A narrow range of estradiol stimulated progesterone production supports an "off-on-off" mechanism regulating the transition from estrogen negative feedback to estrogen positive feedback, and back again. The rapidity of the [Ca(2+)](i) response and progesterone synthesis support a non-genomic, membrane-initiated signaling mechanism. In hypothalamic astrocytes, membrane-associated estrogen receptors (mERs) signal through transactivation of the metabotropic glutamate receptor type 1a (mGluR1a), implying that astrocytic function is influenced by surrounding glutamatergic nerve terminals. Although other putative mERs, such as mERβ, STX-activated mER-Gα(q), and G protein-coupled receptor 30 (GPR30), are present and participate in membrane-mediated signaling, their influence in reproduction is still obscure since female reproduction be it estrogen positive feedback or lordosis behavior requires mERα. The astrocrine hypothesis is also consistent with the well-known sexual dimorphism of estrogen positive feedback. In rodents, only post-pubertal females exhibit this positive feedback. Hypothalamic astrocytes cultured from females, but not males, responded to estradiol by increasing progesterone synthesis. Estrogen autoregulates its own signaling by regulating levels of mERα in the plasma membrane of female astrocytes. In male astrocytes, the estradiol-induced increase in mERα was attenuated, suggesting that membrane-initiated estradiol signaling (MIES) would also be blunted. Indeed, estradiol induced [Ca(2+)](i) release in male astrocytes, but not to levels required to stimulate progesterone synthesis. Investigation of this sexual differentiation was performed using hypothalamic astrocytes from post-pubertal four core genotype (FCG) mice. In this model, genetic sex is uncoupled from gonadal sex. We demonstrated that animals that developed testes (XYM and XXM) lacked estrogen positive feedback, strongly suggesting that the sexual differentiation of progesterone synthesis is driven by the sex steroid environment during early development. This article is part of a Special Issue entitled 'Neurosteroids'.  相似文献   

7.
Plasma samples were assayed for androgen in gray short-tailed opossums (Monodelphis domestica) on the day of birth and at selected ages through adulthood. Levels of androgen in mixed-sex plasma pools of animals 4 and 8 days of age were higher than in either sex at all other ages examined. At postnatal Days 16, 30, and 60 (weaning), levels of androgen were equivalent in males and females and as high as in adult males. In both sexes, androgen levels were lower at postnatal Day 84 (juveniles) than at younger ages; after puberty, levels were significantly higher in males than in females. These findings are discussed with respect to similarities and differences between marsupials and eutherians in hormonal environment during the perinatal period and with respect to the possible role of androgens in sexual differentiation of the gray opossum brain.  相似文献   

8.
The influence of testosterone, luteinizing hormone releasing hormone (LHRH) agonist and combinations of these hormones on gonadotropic hormone (GtH) levels in the sexually immature trout was investigated. Both the steroid and releasing hormone preparations, testosterone in Silastic capsules and cholesterol-pelleted LHRH-A, were formulated for sustained release and long-term biological action following a single hormone implantation. Marked increases in pituitary GtH followed testosterone and/or testosterone and LHRH analogue treatment combined, but the low pituitary GtH level in controls remained unchanged after LHRH analogue administration alone. Plasma GtH titers increased with time after testosterone treatment, indicating a positive steroid feedback effect by androgen on GtH in the juvenile rainbow trout. When combined with testosterone treatment, LHRH analogue augmented plasma GtH levels compared to fish receiving testosterone treatment alone. In males the elevated plasma GtH levels were associated with testes stimulation and onset of spermatogenesis; in females, however, no significant stimulation of the ovaries was observed. It can be concluded from these studies that the testosterone stimulus is sufficient to induce onset of sexual development in immature males but not females. Whereas LHRH analogue releases GtH from the testosterone-primed trout pituitary, LHRH treatment alone under these conditions fails to stimulate the juvenile trout reproductive system.  相似文献   

9.
Prenatal androgen treatment can alter LH secretion in female offspring, often with adverse effects on ovulatory function. However, female spotted hyenas (Crocuta crocuta), renowned for their highly masculinized genitalia, are naturally exposed to high androgen levels in utero. To determine whether LH secretion in spotted hyenas is affected by prenatal androgens, we treated pregnant hyenas with antiandrogens (flutamide and finasteride). Later, adult offspring of the antiandrogen-treated (AA) mothers underwent a GnRH challenge to identify sex differences in the LH response and to assess the effects of prenatal antiandrogen treatment. We further considered the effects of blocking prenatal androgens on plasma sex steroid concentrations. To account for potential differences in the reproductive state of females, we suppressed endogenous hormone levels with a long-acting GnRH agonist (GnRHa) and then measured plasma androgens after an hCG challenge. Plasma concentrations of LH were sexually dimorphic in spotted hyenas, with females displaying higher levels than males. Prenatal antiandrogen treatment also significantly altered the LH response to GnRH. Plasma estradiol concentration was higher in AA-females, whereas testosterone and androstenedione levels tended to be lower. This trend toward lower androgen levels disappeared after GnRHa suppression and hCG challenge. In males, prenatal antiandrogen treatment had long-lasting effects on circulating androgens: AA-males had lower T levels than control males. The sex differences and effects of prenatal antiandrogens on LH secretion suggest that the anterior pituitary gland of the female spotted hyena is partially masculinized by the high androgen levels that normally occur during development, without adverse effects on ovulatory function.  相似文献   

10.
In tilapia, hormone treatment during the period of sexual differentiation can alter the phenotype of the gonads, indicating that endocrine factors can cause gonadal sex reversal. However, the endocrine mechanism underlying sex reversal of reproductive behaviors remains unsolved. In the present study, we detected sexual dimorphism of gonadotropin-releasing hormone type III (GnRH3) neurons in Mozambique tilapia Oreochromis mossambicus. Our immunohistochemical observations showed sex differences in the number of GnRH3 immunoreactive neurons in mature tilapia; males had a greater number of GnRH3 neurons in the terminal ganglion than females. Treatment with androgen (11-ketotestosterone (11-KT) or methyltestosterone), but not that with 17β-estradiol, increased the number of GnRH3 neurons in females to a level similar to that in males. Furthermore, male-specific nest-building behavior was induced in 70% of females treated with 11-KT within two weeks after the onset of the treatment. These results indicate androgen-dependent regulation of GnRH3 neurons and nest-building behavior, suggesting that GnRH3 is importantly involved in sex reversal of male-specific reproductive behavior.  相似文献   

11.
Sexual differentiation of rodent brain is dependent upon hormonal exposure during a “critical period” beginning in late gestation and ending in early neonatal life. Steroid hormone action at this time results in anatomical and physiological sexual dimorphisms in adult brain, but the mechanism mediating these changes is essentially unknown. The inhibitory neurotransmitter, GABA, is involved in regulation of sexually dimorphic patterns of behavior and gonadotropin secretion in the adult. Recent evidence suggests that during development GABA is excitatory and provides critical neurotrophic and neuromodulatory influences. We hypothesized that steroid-induced changes in GABAergic neurotransmission during this critical period are important mediators of sexual differentiation in brain. Therefore, we quantified levels of mRNA for GAD, the rate-limiting enzyme in GABA synthesis. On Postnatal Day 1, males had significantly higher levels of GAD mRNA in the dorsomedial nucleus, arcuate nucleus, and CA1 region of hippocampus. On Postnatal Day 15, after the critical period for sexual differentiation has ended, these differences were no longer present. We examined the role of gonadal steroids in regulating GAD by removing testes of males and administering testosterone to females at birth. Exposure to testosterone was correlated with increased GAD mRNA in the dorsomedial nucleus. A sex difference in GAD mRNA was also observed in the medial preoptic area, but the influence of testosterone was inconclusive. We conclude that sex differences in the GABAergic system during development are partially hormonally mediated, and that these differences may contribute to the development of sexually dimorphic characteristics in adult brain.  相似文献   

12.
This study investigated plasma and pituitary concentrations of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and steroid hormones (progesterone: P4, testosterone:T, estradiol-17beta: E2) by enzyme-immunoassay (EIA) in minke whales (Balaenoptera acutorostrata) captured during the feeding season (December to March) in the Antarctic Ocean. Plasma FSH and LH levels in female minke whales were higher (P <0.05) than in male whales. Although the pituitary weight was not significantly different between male and female whales, pituitary FSH and LH levels were higher in females than in males (P<0.01) and mature whales than immature whales (P<0.05). Plasma levels of FSH, T and E2 were not significantly different between immature and mature male whales, but plasma LH and pituitary FSH and LH levels were higher (P<0.05) in mature than in immature whales. In both immature and mature whales regardless of gender, pituitary FSH and LH levels were correlated significantly (r=0.69: P<0.01). In mature male whales, plasma T and E2 levels (r=0.60: P<0.01), and testis weight and plasma T levels (r=0.46: P <0.05) were correlated. In immature female whales, plasma FSH and LH levels were highly correlated (r=0.68: P<0.001), but were not for mature female whales. The results show that gender and maturity influence gonadal and pituitary function of minke whales during the feeding season.  相似文献   

13.
The Cape ground squirrel Xerus inauris is unusual among social mammals as it exhibits a low reproductive skew, being a facultative plural breeder with not all females breeding within a group. We investigated pituitary function to assess whether there was reproductive inhibition at the level of the pituitary and potentially the hypothalamus in breeding and non-breeding female Cape ground squirrels. We did so during the summer and winter periods by measuring luteinizing hormone (LH) responses to single doses of 2 g exogenous gonadotropin-releasing hormone (GnRH) and physiological saline administered to 42 females from 11 colonies. Basal LH concentrations of females increased in response to the GnRH challenge. Basal plasma LH concentrations were greater during winter, when most oestrus events are observed. However, we found no differences in plasma LH concentrations between breeding and non-breeding females. We showed that the anterior pituitary of non-breeding female ground squirrels is no less sensitive to exogenously administered GnRH than that of breeding females. We therefore concluded that the pituitary is no more active in breeding than non-breeding females. The lack of differentiation in response to GnRH suggests that either non-breeding females have ovaries that are less sensitive to LH or that they refrain from sexual activity with males through an alternative mechanism of self-restraint.  相似文献   

14.
Fish are ectothermic vertebrates, and their gonadal development and spawning are affected by changes in environmental temperature. Recent global temperature changes have increased the importance of studying the effect of temperature on reproduction. The aim of this paper was to study the effect of temperature on oogenesis and hormone gene expression related to reproduction and growth in the blue gourami female maintained under non-reproductive and reproductive conditions. In females under non-reproductive conditions, vitellogenic oocytes, gonadotropin-releasing hormone 3 (GnRH3), β luteinizing hormone (βLH) and growth hormone (GH) mRNA levels were affected by temperature changes. In females maintained under reproductive conditions with non-reproductively active males, a percentage of females in the final oocyte maturation (FOM) stage, pituitary adenylyl cyclase activating polypeptide (PACAP and PRP-PACAP), gonadotropins and GH mRNA levels were affected due to temperature changes. In females maintained under reproductive conditions with reproductively active males, also GnRH3 and insulin-like growth factor 1 (IGF-1) were affected by temperature changes. In conclusion, in blue gourami females, changes in environmental temperature affect oogenesis through changes in brain and pituitary hormone mRNA levels.  相似文献   

15.
16.
DNA methylation is a prevalent epigenetic modification in vertebrates, and it has been shown to be involved the regulation of gene expression and embryo development. However, it remains unclear how DNA methylation regulates sexual development, especially in species without sex chromosomes. To determine this, we utilized zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition.We reveal that primordial germ cells(PGCs) undergo significant DNA methylation reprogramming during germ cell development, and the methylome of PGCs is reset to an oocyte/ovary-like pattern at 9 days post fertilization(9 dpf). When DNA methyltransferase(DNMT) activity in juveniles was blocked after 9 dpf, the zebrafish developed into females. We also show that Tet3 is involved in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMT activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germ cell development and sexual plasticity.  相似文献   

17.
This study addressed the role of testosterone (T) in the development of sexually dimorphic behavior in the green anole lizard, Anolis carolinensis. We documented the pattern of endogenous T concentrations during ontogeny and we determined the behavioral effects of experimentally elevated T in juvenile males and females. T concentrations were measured in the plasma of hatchlings from eggs incubated in the laboratory, in juveniles of all sizes sampled in the field, and in the yolks of freshly laid eggs in the laboratory and were compared to plasma T in adult females (measured in this study) and adult males. There were no sex differences in plasma T in hatchling and small juvenile (<26-mm snout-vent length, SVL; <14 days old) males and females, concentrations of which in both sexes tended to decline over the 14-day posthatching period. Plasma T sharply increased in juvenile males, but not females, after approximately 14 days posthatching (>25-mm SVL), and it became significantly higher after approximately 38 days posthatching (>30-mm SVL). Plasma T for juvenile males was within the range detected in breeding adult females, but it was 20- to 45-fold lower than that of adult males, breeding or postbreeding. All eggs contained detectable yolk T, but eggs that gave rise to males contained nearly twice as much yolk T as those that gave rise to females. We do not know whether this yolk T comes from the mother, embryo, or both. In behavior trials conducted in the laboratory, juveniles (36- to 42-mm SVL) with T implants, regardless of whether they were male or female, had increased activity levels compared to juveniles with blank implants, due to increased rates of nearly every behavior monitored. These results are discussed in the context of the organization-activation theory of sexual differentiation and the particular life history of A. carolinensis.  相似文献   

18.
The effects of neonatal thymectomy, at 3 days of age, on parameters of the reproductive axis were examined in male and female Sprague-Dawley rats. Gonadal and accessory sex tissue (male: epididymis, seminal vesicle, and ventral prostate; female: uterus) weights as well as anterior pituitary, spleen, and adrenal weights were determined in the thymectomized and sham-thymectomized animals at 20, 30, 40, 50, 60, and 90 days of age. Plasma gonadotropin concentrations as well as pituitary content of the gonadotropins and prolactin were assessed at each of these time intervals. No significant difference in gonad and accessory sex tissue weights was detected in thymectomized versus sham-operated controls at each of these times. Adrenal weights were increased in thymectomized animals compared with controls at 50 days of age and older in male rats and at 90 days in females. Spleen weights were decreased in the thymectomized males at 50 and 60 days of age. Thymectomy did not affect the spleen weight of females. Plasma concentrations of gonadotropins were unaffected in thymectomized males but were altered in females during the pre- and peripubertal period (Days 20-40). Vaginal opening, however, occurred at the same time in the thymectomized and control females. Pituitary gonadotropin and prolactin content were unaffected by thymectomy of the females, except at 90 days when pituitary luteinizing hormone (LH) content was lower in thymectomized than in control animals. LH and prolactin content were significantly reduced in the males at 60 and 90 days of age. These results demonstrate that there are sexual differences in the effects of thymectomy on parameters of the reproductive axis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Female long-tailed macaques (Macaca fascicularis) living in multimale and multifemale societies show a swelling and reddening of the sexual skin around the anogenital region when they approach ovulation. These swellings are limited to the base of the tail in many local populations. We recently observed another type of sexual swelling in long-tailed macaques inhabiting localities north of the Isthmus of Kra, Thailand. This swelling was located in the inguinal region in pubertal females. These swellings develop bilaterally into a globular structure, which so strongly resembles the male scrotum that it is difficult to reliably identify an individual's sex at a distance using only the standard phenotypic features of differential presence of clitoris or scrotum. The sex of the monkeys possessing the scrotum-like swelling was examined at the chromosomal and gonadal levels by determining the presence of two sex-related genes (the SRY and the AMEL), and sex-steroid hormone levels, respectively. For chromosomal sex, polymerase chain reaction (PCR)-based assays suggested the absence of the Y-linked SRY and AMEL loci but the presence of the X-linked AMEL locus in the scrotum-like monkeys, consistent with them being XX and not XY. Plasma testosterone levels of the monkeys possessing the inguinal sex skin swelling did not differ from those of ordinary females and was significantly lower than that of subadult and adult males. However, plasma estradiol levels were higher than those of both ordinary adult males and ordinary adult females. Together, the data strongly support the suggestion that these are XX females. Indeed, most of the tissue components of the scrotum-like swelling were in fact adipose cells. Upon our latest survey in Thailand, the scrotum-like swellings were observed only in long-tailed macaques inhabiting the Indochinese region, above the Isthmus of Kra. To understand whether the scrotum-like swelling is related to geographical distribution, further study is necessary.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号