首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The common lymphatic endothelial and vascular endothelial receptor (CLEVER-1; also known as FEEL-1 and stabilin-1) is a recycling and intracellular trafficking receptor with multifunctional properties. In this study, we demonstrate increased endothelial expression of CLEVER-1/stabilin-1 at sites of leukocyte recruitment to the inflamed human liver including sinusoids, septal vessels, and lymphoid follicles in inflammatory liver disease and tumor-associated vessels in hepatocellular carcinoma. We used primary cultures of human hepatic sinusoidal endothelial cells (HSEC) to demonstrate that CLEVER-1/stabilin-1 expression is enhanced by hepatocyte growth factor but not by classical proinflammatory cytokines. We then showed that CLEVER-1/stabilin-1 supports T cell transendothelial migration across HSEC under conditions of flow with strong preferential activity for CD4 FoxP3(+) regulatory T cells (Tregs). CLEVER-1/stabilin-1 inhibition reduced Treg transendothelial migration by 40% and when combined with blockade of ICAM-1 and vascular adhesion protein-1 (VAP-1) reduced it by >80%. Confocal microscopy demonstrated that 60% of transmigrating Tregs underwent transcellular migration through HSEC via ICAM-1- and VAP-1-rich transcellular pores in close association with CLEVER-1/stabilin-1. Thus, CLEVER-1/stabilin-1 and VAP-1 may provide an organ-specific signal for Treg recruitment to the inflamed liver and to hepatocellular carcinoma.  相似文献   

2.
Hepatocyte growth factor promotes lymphatic vessel formation and function   总被引:20,自引:0,他引:20  
The lymphatic vascular system plays a pivotal role in mediating tissue fluid homeostasis and cancer metastasis, but the molecular mechanisms that regulate its formation and function remain poorly characterized. A comparative analysis of the gene expression of purified lymphatic endothelial cells (LEC) versus blood vascular endothelial cells (BVEC) revealed that LEC express significantly higher levels of hepatocyte growth factor receptor (HGF-R). Whereas little or no HGF-R expression was detected by lymphatic vessels of normal tissues, HGF-R was strongly expressed by regenerating lymphatic endothelium during tissue repair and by activated lymphatic vessels in inflamed skin. Treatment of cultured LEC with HGF promoted LEC proliferation, migration and tube formation. HGF-induced proliferation of LEC did not require vascular endothelial growth factor receptor-3 activation, and HGF-induced cell migration was partially mediated via integrin alpha-9. Transgenic or subcutaneous delivery of HGF promoted lymphatic vessel formation in mice, whereas systemic blockade of HGF-R inhibited lymphatic function. These results identify HGF as a novel, potent lymphangiogenesis factor, and also indicate that HGF-R might serve as a new target for inhibiting pathological lymphangiogenesis.  相似文献   

3.
Lipoxins are formed by leukocytes during cell-cell interactions with epithelial or endothelial cells. Native lipoxin A(4) (LXA(4)) binds to the G protein-coupled lipoxin receptors formyl peptide receptor 2 (FPR2)/ALX and CysLT1. Furthermore, LXA(4) inhibits recruitment of neutrophils, by attenuating chemotaxis, adhesion, and transmigration across vascular endothelial cells. LXA(4) thus appears to serve as an endogenous "stop signal" for immune cell-mediated tissue injury (Serhan CN; Annu Rev Immunol 25: 101-137, 2007). The role of LXA(4) has not been addressed in salivary epithelium, and little is known about its effects on vascular endothelium. Here, we determined that interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) receptor activation in vascular endothelium and salivary epithelium upregulated the expression of adhesion molecules that facilitates the binding of immune cells. We hypothesize that the activation of the ALX/FPR2 and/or CysLT1 receptors by LXA(4) decreases this cytokine-mediated upregulation of cell adhesion molecules that enhance lymphocyte binding to both the vascular endothelium and salivary epithelium. In agreement with this hypothesis, we observed that nanomolar concentrations of LXA(4) blocked IL-1β- and TNF-α-mediated upregulation of E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) on human umbilical vein endothelial cells (HUVECs). Binding of Jurkat cells to stimulated HUVECs was abrogated by LXA(4). Furthermore, LXA(4) preincubation with human submandibular gland cell line (HSG) also blocked TNF-α-mediated upregulation of vascular cell adhesion molecule-1 (VCAM-1) in these cells, and it reduced lymphocyte adhesion. These findings suggest that ALX/FPR2 and/or CysLT1 receptor activation in endothelial and epithelial cells blocks cytokine-induced adhesion molecule expression and consequent binding of lymphocytes, a critical event in the pathogenesis of Sj?gren's syndrome (SS).  相似文献   

4.
According to the current model for tissue-specific homing, specificity is conferred by the selective recruitment of lymphocyte populations from peripheral blood, based on their expression of chemokine and adhesion receptors (endothelial selection). In this study, we provide evidence for an alternative stromal induction mechanism that operates in chronic inflammation. We show that the human rheumatoid synovial microenvironment directly induces functional inflammatory (CCR5 and CXCR3) and constitutive (CCR7 and CXCR4) chemokine receptors on infiltrating CD4(+) T cells. Expression of the corresponding inflammatory chemokine ligands (CCL5 and CXCL11) was confined to stromal areas in the synovium. However, expression of the constitutive ligands (CCL19 and CXCL12) was inappropriately high on both vascular and lymphatic endothelium, suggesting that the vascular to lymphatic chemokine gradient involved in lymphatic recirculation becomes subverted in the rheumatoid synovium. These results challenge the view that leukocyte trafficking is regulated solely by selective recruitment of pre-existing chemokine receptor-positive cells from peripheral blood, by providing an alternative explanation based on aberrant lymphocyte retention and compromised lymphatic return.  相似文献   

5.
Dellinger MT  Brekken RA 《PloS one》2011,6(12):e28947
There is growing evidence that vascular endothelial growth factor-A (VEGF-A), a ligand of the receptor tyrosine kinases VEGFR1 and VEGFR2, promotes lymphangiogenesis. However, the underlying mechanisms by which VEGF-A induces the growth of lymphatic vessels remain poorly defined. Here we report that VEGFR2, not VEGFR1, is the primary receptor regulating VEGF-A-induced lymphangiogenesis. We show that specific inhibition of VEGF-A/VEGFR2 signaling with the fully human monoclonal antibody r84 significantly inhibits lymphangiogenesis in MDA-MB-231 tumors. In vitro experiments with primary human dermal lymphatic endothelial cells (LECs) demonstrate that blocking VEGF-A activation of VEGFR2, not VEGFR1, significantly inhibits VEGF-A-induced proliferation and migration of LECs. We show that VEGF-A stimulation of LECs leads to the phosphorylation of VEGFR2 (Tyr 951, 1054, 1059, 1175, and 1214) which subsequently triggers PKC dependent phosphorylation of ERK1/2 and PI3-K dependent phosphorylation of Akt. Additionally, we demonstrate that inhibitors that suppress the phosphorylation of ERK1/2 and Akt significantly block VEGF-A- induced proliferation and migration of LECs. Together, these results shed light on the mechanisms regulating VEGF-A-induced proliferation and migration of LECs, reveal that VEGFR2 is the primary signaling VEGF-A receptor on lymphatic endothelium, and suggest that therapeutic agents targeting the VEGF-A/VEGFR2 axis could be useful in blocking the pathological formation of lymphatic vessels.  相似文献   

6.
Summary The passage of cells across the lymphatic endothelium of rat lacteals in both normal and non-pathological experimental conditions (fasting, lymphatic stasis) was studied by means of serial thin sections and three-dimensional models. Two different pathways of transendothelial migration were observed: (1) macrophages enter the lymphatic lumen via the cytoplasm of endothelial cells, without involvement of intercellular junctions, whereas (2) lymphocytes migrate through intraendothelial channels, dynamic structures organized by the lymphatic endothelium under physiological conditions.  相似文献   

7.
The Duffy Ag expressed on RBCs, capillaries, and postcapillary venular endothelial cells binds selective CXC and CC chemokines with high affinity. Cells transfected with the Duffy Ag internalize but do not degrade chemokine ligand. It has been proposed that Duffy Ag transports chemokines across the endothelium. We hypothesized that Duffy Ag participates in the movement of chemokines across the endothelium and, by doing so, modifies neutrophil transmigration. We found that the Duffy Ag transfected into human endothelial cells facilitates movement of the radiolabeled CXC chemokine, growth related oncogene-alpha/CXC chemokine ligand 1 (GRO-alpha/CXCL1), across an endothelial monolayer. In addition, neutrophil migration toward GRO-alpha/CXCL1 and IL-8 (IL-8/CXCL8) was enhanced across an endothelial monolayer expressing the Duffy Ag. Furthermore, GRO-alpha/CXCL1 stimulation of endothelial cells expressing the Duffy Ag did not affect gene expression by oligonucleotide microarray analysis. These in vitro observations are supported by the finding that IL-8/CXCL8-driven neutrophil recruitment into the lungs was markedly attenuated in transgenic mice lacking the Duffy Ag. We conclude that Duffy Ag has a role in enhancing leukocyte recruitment to sites of inflammation by facilitating movement of chemokines across the endothelium.  相似文献   

8.
Production of prostaglandin D2 (PGD2) was investigated in cultured endothelial cells derived from capillaries and microvessels (small and large) of human brain using radioimmunoassays. Peptides, catecholamines, thrombin, protein kinase C-activating phorbol ester and calcium ionophore greatly stimulated the secretion of endothelial PGD2. Secretion of PGD2 induced by vasoconstricting peptides, angiotensin II and arginine-vasopressin, was almost completely abolished by their respective specific receptor antagonists [Sar1, Ala8]-Ang II and [1-6(beta-mercapto-beta,beta-cyclopentamethylene propionic acid) 2-O-methyltyrosine]. Thus, the augmented production of PGD2 by angiotensin II and arginine-vasopressin is a receptor-mediated event. It also indicates that the EC have specific angiotensin II and arginine-vasopressin (V1) receptors. This study represents the first demonstration of vasoactive agents modulating PGD2 production in capillary and microvascular endothelium of human brain.  相似文献   

9.
10.
11.
Active lymph transport relies on smooth muscle cell (SMC) contractions around collecting lymphatic vessels, yet regulation of lymphatic vessel wall assembly and lymphatic pumping are poorly understood. Here, we identify Reelin, an extracellular matrix glycoprotein previously implicated in central nervous system development, as an important regulator of lymphatic vascular development. Reelin-deficient mice showed abnormal collecting lymphatic vessels, characterized by a reduced number of SMCs, abnormal expression of lymphatic capillary marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and impaired function. Furthermore, we show that SMC recruitment to lymphatic vessels stimulated release and proteolytic processing of endothelium-derived Reelin. Lymphatic endothelial cells in turn responded to Reelin by up-regulating monocyte chemotactic protein 1 (MCP1) expression, which suggests an autocrine mechanism for Reelin-mediated control of endothelial factor expression upstream of SMC recruitment. These results uncover a mechanism by which Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels--smooth muscle and endothelial cells--and highlight a hitherto unrecognized and important function for SMCs in lymphatic vessel morphogenesis and function.  相似文献   

12.
The success of stem cell transplantation depends on the ability of i.v. infused stem cells to engraft the bone marrow, a process referred to as homing. Efficient homing requires migration of CD34(+) cells across the bone marrow endothelium, most likely through the intercellular junctions. In this study, we show that loss of vascular endothelial (VE)-cadherin-mediated endothelial cell-cell adhesion increases the permeability of monolayers of human bone marrow endothelial cells (HBMECs) and stimulates the transendothelial migration of CD34(+) cells in response to stromal cell-derived factor-1alpha. Stromal cell-derived factor-1alpha-induced migration was dependent on VCAM-1 and ICAM-1, even in the absence of VE-cadherin function. Cross-linking of ICAM-1 to mimic the leukocyte-endothelium interaction induced actin stress fiber formation but did not induce loss of endothelial integrity, whereas cross-linking of VCAM-1 increased the HBMEC permeability and induced gaps in the monolayer. In addition, VCAM-1-mediated gap formation in HBMEC was accompanied by and dependent on the production of reactive oxygen species. These data suggest that modulation of VE-cadherin function directly affects the efficiency of transendothelial migration of CD34(+) cells and that activation of ICAM-1 and, in particular, VCAM-1 plays an important role in this process through reorganization of the endothelial actin cytoskeleton and by modulating the integrity of the bone marrow endothelium through the production of reactive oxygen species.  相似文献   

13.
Lymphocyte recruitment in delayed-type hypersensitivity. The role of IFN-gamma   总被引:23,自引:0,他引:23  
Lymphocytes are recruited out of the blood into delayed-type hypersensitivity (DTH) reactions, but the factors controlling their migration are poorly understood. Our previous studies have shown that IFN-alpha/beta, its inducers, and T cell lymphokines can induce lymphocyte migration into the skin after intradermal injection. The present studies were designed to determine the effect of rIFN-gamma, IL-1, and anti-IFN-gamma on lymphocyte recruitment into DTH. Small peritoneal exudate lymphocytes, which preferentially migrate to inflammatory sites, were labelled with 111In and injected i.v. into rats. The intradermal injection of IFN-gamma stimulated the migration of these lymphocytes into the skin. IL-1 induced very little migration by itself, but enhanced the effect of IFN-gamma. Kinetic analysis demonstrated that the migration of lymphocytes to IFN-gamma was rapid, with a peak at 6 h, whereas migration into a DTH reaction was minimal for the first 8 h and reached a peak 24 h after intradermal injection. Polyclonal rabbit anti-IFN-gamma anti-serum, and a Mab to IFN-gamma, DB-2, could almost completely block lymphocyte migration induced by IFN-gamma. Furthermore, DB-2 inhibited lymphocyte recruitment into DTH reactions by 50 to 90%. This Mab did not affect migration in response to IFN-alpha/beta, although it partially inhibited the response to polyI:C. The effect of IFN-gamma on lymphocyte recruitment was not specific for small peritoneal exudate lymphocytes, because both spleen T cells and lymph node cells migrated in response to IFN-gamma and DB-2 inhibited the recruitment of splenic T cells to DTH. Thus, IFN-gamma is a potent stimulator of lymphocyte migration into the skin and a major mediator of lymphocyte recruitment into DTH.  相似文献   

14.
15.
Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  相似文献   

16.
Borrelia burgdorferi, the agent of Lyme disease, promotes proinflammatory changes in the endothelium that lead to the recruitment of leukocytes. The host immune response to infection results in increased levels of IFN-gamma in the serum and lesions of Lyme disease patients that correlate with greater severity of disease. Therefore, the effect of IFN-gamma on the gene expression profile of primary human endothelial cells exposed to B. burgdorferi was determined. B. burgdorferi and IFN-gamma synergistically augmented the expression of 34 genes, 7 of which encode chemokines. Six of these (CCL7, CCL8, CX3CL1, CXCL9, CXCL10, and CXCL11) attract T lymphocytes, and one (CXCL2) is specific for neutrophils. Synergistic production of the attractants for T cells was confirmed at the protein level. IL-1beta, TNF-alpha, and LPS also cooperated with IFN-gamma to induce synergistic production of CXCL10 by the endothelium, indicating that IFN-gamma potentiates inflammation in concert with a variety of mediators. An in vitro model of the blood vessel wall revealed that an increased number of human T lymphocytes traversed the endothelium exposed to B. burgdorferi and IFN-gamma, as compared with unstimulated endothelial monolayers. In contrast, addition of IFN-gamma diminished the migration of neutrophils across the B. burgdorferi-activated endothelium. IFN-gamma thus alters gene expression by endothelia exposed to B. burgdorferi in a manner that promotes recruitment of T cells and suppresses that of neutrophils. This modulation may facilitate the development of chronic inflammatory lesions in Lyme disease.  相似文献   

17.
During normal aging and amyloid beta-peptide (Abeta) disorders such as Alzheimer's disease (AD), one finds increased deposition of Abeta and activated monocytes/microglial cells in the brain. Our previous studies show that Abeta interaction with a monolayer of normal human brain microvascular endothelial cells results in increased adherence and transmigration of monocytes. Relatively little is known of the role of Abeta accumulated in the AD brain in mediating trafficking of peripheral blood monocytes (PBM) across the blood-brain barrier (BBB) and concomitant accumulation of monocytes/microglia in the AD brain. In this study, we showed that interaction of Abeta(1--40) with apical surface of monolayer of brain endothelial cells (BEC), derived either from normal or AD individuals, resulted in increased transendothelial migration of monocytic cells (HL-60 and THP-1) and PBM. However, transmigration of monocytes across the BEC monolayer cultivated in a Transwell chamber was increased 2.5-fold when Abeta was added to the basolateral side of AD compared with normal individual BEC. The Abeta-induced transmigration of monocytes was inhibited in both normal and AD-BEC by antibodies to the putative Abeta receptor, receptor for advanced glycation end products (RAGE), and to the endothelial cell junction molecule, platelet-endothelial cell adhesion molecule-1 (PECAM-1). We conclude that interaction of Abeta with the basolateral surface of AD-BEC induces cellular signaling, promoting transmigration of monocytes from the apical to basolateral direction. We suggest that Abeta in the AD brain parenchyma or cerebrovasculature initiates cellular signaling that induces PBM to transmigrate across the BBB and accumulate in the brain.  相似文献   

18.
New blood vessels are initially formed through the assembly or sprouting of endothelial cells, but the recruitment of supporting pericytes and vascular smooth muscle cells (mural cells) ensures the formation of a mature and stable vascular network. Defective mural-cell coverage is associated with the poorly organized and leaky vasculature seen in tumors or other human diseases. Here we report that mural cells require ephrin-B2, a ligand for Eph receptor tyrosine kinases, for normal association with small-diameter blood vessels (microvessels). Tissue-specific mutant mice display perinatal lethality; vascular defects in skin, lung, gastrointestinal tract, and kidney glomeruli; and abnormal migration of smooth muscle cells to lymphatic capillaries. Cultured ephrin-B2-deficient smooth muscle cells are defective in spreading, focal-adhesion formation, and polarized migration and show increased motility. Our results indicate that the role of ephrin-B2 and EphB receptors in these processes involves Crk-p130(CAS) signaling and suggest that ephrin-B2 has some cell-cell-contact-independent functions.  相似文献   

19.
CD73-deficient mice are valuable for evaluating the ability of CD73-generated adenosine to modulate adenosine receptor-mediated responses. Here we report the role of CD73 in regulating lymphocyte migration across two distinct barriers. In the first case, CD73-generated adenosine restricts the migration of lymphocytes across high endothelial venules (HEV) into draining lymph nodes after an inflammatory stimulus, apparently by triggering A(2B) receptors on HEV. Secondly, CD73 promotes the migration of pathogenic T cells into the central nervous system during experimental autoimmune encephalomyelitis. Experiments are in progress to determine whether this effect is also adenosine receptor-mediated and to identify the relevant adenosine receptor.  相似文献   

20.
The expression of leukocyte adhesion molecules on lymphatic vessels of the human tongue was examined using histochemical and immunohistochemical methods. Three different types of lymphatic vessels were distinguished: type I vessels expressed intercellular adhesion molecule-1 (ICAM-1), platelet-endothelial cell adhesion molecule-1 (PECAM-1), and endothelial cell-selectin (ELAM-1); type II vessels expressed ICAM-1 and PECAM-1; and type III vessels expressed PECAM-1 only. The lymphatic vessels located very close to the oral epithelium (lymphatic capillaries) and the other lymphatic vessels near the oral epithelium were type I. The lymphatic vessels in the submucosal connective tissue (collecting lymphatic vessels) were type II and type III. The results suggest that there may be functional differences in the lymphatic endothelium, where lymphatic capillaries are more active than collecting lymphatic vessels in lymphocyte migration from tissue into the lymphatic vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号