首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Membrane current following prolonged periods of rapid stimulation was examined in short (less than 1.5 mm) canine cardiac Purkinje fibers of radius less than 0.15 mm. The Purkinje fibers were repetitively stimulated by delivering trains of depolarizing voltage clamp pulses at rapid frequencies. The slowly decaying outward current following repetitive stimulation ("post-drive" current) is eliminated by the addition of 10(-5) M dihydro-ouabain. The post-drive current is attributed to enhanced Na/K exchange caused by Na loading during the overdrive. Depolarizing voltage clamp pulses initiated from negative (- 80 mV) or depolarized (-50 mV) holding potentials can give rise to post- drive current because of activation of tetrodotoxin-sensitive or D600- sensitive channels. The magnitude of the post-drive current depends on the frequency of voltage clamp pulses, the duration of each pulse, and the duration of the repetitive stimulation. The time constant of decay of the post-drive current depends on extracellular [K] in accordance with Michaelis-Menten kinetics. The Km is 1.2 mM bulk [K], [K]B. The mean time constant in 4 mM [K]B is 83 s. Epinephrine (10(-5) M) decreases the time constant by 20%. The time constant is increased by lowering [Ca]o between 4 and 1 mM. Lowering [Ca]o further, to 0.1 mM, eliminates post-drive current following repetitive stimulation initiated from depolarized potentials. The latter result suggests that slow inward Ca2+ current may increase [Na]i via Na/Ca exchange.  相似文献   

3.
The site 3 toxin, Anthopleurin-A (Ap-A), was used to modify inactivation of sodium channels in voltage-clamped single canine cardiac Purkinje cells at approximately 12 degrees C. Although Ap-A toxin markedly prolonged decay of sodium current (INa) in response to step depolarizations, there was only a minor hyperpolarizing shift by 2.5 +/- 1.7 mV (n = 13) of the half-point of the peak conductance- voltage relationship with a slight steepening of the relationship from - 8.2 +/- 0.8 mV to -7.2 +/- 0.8 mV (n = 13). Increases in Gmax were dependent on the choice of cation used as a Na substitute intracellularly and ranged between 26 +/- 15% (Cs, n = 5) to 77 +/- 19% (TMA, n = 8). Associated with Ap-A toxin modification time to peak INa occurred later, but analysis of the time course INa at multiple potentials showed that the largest effects were on inactivation with only a small effect on activation. Consistent with little change in Na channel activation by Ap-A toxin, INa tail current relaxations at very negative potentials, where the dominant process of current relaxation is deactivation, were similar in control and after toxin modification. The time course of the development of inactivation after Ap-A toxin modification was dramatically prolonged at positive potentials where Na channels open. However, it was not prolonged after Ap-A toxin at negative potentials, where channels predominately inactivate directly from closed states. Steady state voltage-dependent availability (h infinity or steady state inactivation), which predominately reflects the voltage dependence of closed-closed transitions equilibrating with closed-inactivated transitions was shifted in the depolarizing direction by only 1.9 +/- 0.8 mV (n = 8) after toxin modification. The slope factor changed from 7.2 +/- 0.8 to 9.9 +/- 0.9 mV (n = 8), consistent with a prolongation of inactivation from the open state of Ap-A toxin modified channels at more depolarized potentials. We conclude that Ap-A selectively modifies Na channel inactivation from the open state with little effect on channel activation or on inactivation from closed state(s).  相似文献   

4.
We used open tip microelectrodes containing a K+-sensitive liquid ion exchanger to determine directly the intracellular K+ activity in beating canine cardiac Purkinje fibers. For preparations superfused with Tyrode's solution in which the K+ concentration was 4.0 mM, intracellular K+ activity (ak) was 130.0+/-2.3 mM (mean+/-SE) at 37 degrees C. The calculated K+ equilibrium potential (EK) was -100.6+/- 0.5 mV. Maximum diastolic potential (ED) and resting transmembrane potential (EM) were measured with conventional microelectrodes filled with 3 M KCl and were -90.6+/-0.3 and -84.4+/-0.4 mV, respectively. When [K+]o was decreased to 2.0 mM or increased to 6.0, 10.0, and 16.0 mM, ak remained the same. At [K+]o=2.0, ED was -97.3+/-0.4 and Em - 86.0+/-0.7 mV; at [K+]o=16.0, ED fell to -53.8+/-0.4 mV and Em to the same value. Over this range of values for [K+]o, EK changed from - 119.0+/-0.3 to -63.6+/-0.2 mV. These values for EK are consistent with those previously estimated indirectly by other techniques.  相似文献   

5.
The pacemaker current in cardiac Purkinje myocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time-dependent current and unmasks another time-dependent current (i(f)) with a more negative (> 20 mV) threshold and no reversal at more negative values; (d) Cs+ blocks both time-dependent currents recorded in the absence and presence of Ba2+. The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K+ current (iKdd) that can be separated from the hyperpolarization- activated inward current i(f).  相似文献   

6.
Mechanisms underlying action potential generation in the newt olfactory receptor cell were investigated by using the whole-cell version of the patch-clamp technique. Isolated olfactory cells had a resting membrane potential of -70 +/- 9 mV. Injection of a depolarizing current step triggered action potentials under current clamp condition. The amplitude of the action potential was reduced by lowering external Na+ concentration. After a complete removal of Na+, however, cells still showed action potentials which was abolished either by Ca2+ removal or by an application of Ca2+ channel blocker (Co2+ or Ni2+), indicating an involvement of Ca2+ current in spike generation of newt olfactory receptor cells. Under the voltage clamp condition, depolarization of the cell to -40 mV from the holding voltage of -100 mV induced a fast transient inward current, which consisted of Na+ (INa) and T-type Ca2+ (ICa.T) currents. The amplitude of ICa,T was about one fourth of that of INa. Depolarization to more positive voltages also induced L-type Ca2+ current (ICa,L). ICa,L was as small as a few pA in normal Ringer solution. The activating voltage of ICa,T was approximately 10 mV more negative than that of INa. Under current clamp, action potentials generated by a least effective depolarization was almost completely blocked by 0.1 mM Ni2+ (a specific T-type Ca2+ channel blocker) even in the presence of Na+. These results suggest that ICa,T contributes to action potential in the newt olfactory receptor cell and lowers the threshold of spike generation.  相似文献   

7.
Sodium current (INa) inactivation kinetics in neonatal cardiac myocytes were analyzed using whole cell voltage clamp before and after acute treatments with thyroid hormone (3,5,3'-triiodo-L-thyronine, T3). In untreated neonatal myocytes, INa inactivation was predominantly mono-exponential, with 93 +/- 3% (S.D.; n = 9) of the peak amplitude decaying with a time constant, tau h1, of 1.8 +/- 0.5 ms at -30 mV. The remaining 7% of control INa decayed more slowly, with a time constant, tau h2, of 9.3 +/- 3.0 ms at -30 mV. The contribution of slowly-inactivating channels to peak current was increased from 7% to 43 +/- 27% within 5 min of exposure to 5-20 nM T3 (nine cells; P less than 0.005). The time constants for both the fast- and slow-inactivating components of peak current (tau h1 and tau h2) were not significantly changed by acute T3 treatment, nor was steady-state INa inactivation (h infinity) affected. Thyroid hormone action on sodium inactivation was partially reversible by lidocaine. These findings indicate that T3 acts at the neonatal cardiac cell membrane to promote slow inactivation kinetics in sodium channels.  相似文献   

8.
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.  相似文献   

9.
Intracellular Mg2+ concentration ([Mg2+]i) was measured in rat ventricular myocytes with the fluorescent indicator furaptra (25 degrees C). After the myocytes were loaded with Mg2+, the initial rate of decrease in [Mg2+]i (initial Delta[Mg2+]i/Deltat) was estimated upon introduction of extracellular Na+, as an index of the rate of Na+-dependent Mg2+ efflux. The initial Delta[Mg2+]i/Deltat values with 140 mM [Na+]o were essentially unchanged by the addition of extracellular Ca2+ up to 1 mM (107.3+/-8.7% of the control value measured at 0 mM [Ca2+]o in the presence of 0.1 mM EGTA, n=5). Intracellular loading of a Ca2+ chelator, either BAPTA or dimethyl BAPTA, by incubation with its acetoxymethyl ester form (5 microM for 3.5 h) did not significantly change the initial Delta[Mg2+]i/Deltat: 115.2+/-7.5% (seven BAPTA-loaded cells) and 109.5+/-10.9% (four dimethyl BAPTA loaded cells) of the control values measured in the absence of an intracellular chelator. Extracellular and/or intracellular concentrations of K+ and Cl- were modified under constant [Na+]o (70 mM), [Ca2+]o (0 mM with 0.1 mM EGTA), and membrane potential (-13 mV with the amphotericin-B-perforated patch-clamp technique). None of the following conditions significantly changed the initial Delta[Mg2+]i/Deltat: 1), changes in [K+]o between 0 mM and 75 mM (65.6+/-5.0% (n=11) and 79.0+/-6.0% (n=8), respectively, of the control values measured at 140 mM [Na+]o without any modification of extracellular and intracellular K+ and Cl-); 2), intracellular perfusion with K+-free (Cs+-substituted) solution from the patch pipette in combination with removal of extracellular K+ (77.7+/-8.2%, n=8); and 3), extracellular and intracellular perfusion with K+-free and Cl--free solutions (71.6+/-5.1%, n=5). These results suggest that Mg2+ is transported in exchange with Na+, but not with Ca2+, K+, or Cl-, in cardiac myocytes.  相似文献   

10.
Calcium entry in squid axons during voltage clamp pulses   总被引:1,自引:0,他引:1  
Squid giant axons were injected with aequorin and tetraethylammonium and were impaled with sodium ion sensitive, current and voltage electrodes. The axons were usually bathed in a solution of varying Ca2+ concentration ([Ca2+]o) containing 150mM each of Na+, K+ and an inert cation such as Li+, Tris or N-methylglucamine and had ionic currents pharmacologically blocked. Voltage clamp pulses were repeatedly delivered to the extent necessary to induce a change in the aequorin light emission, a measure of axoplasmic Ca2+ level, [Ca2+]i. The effect of membrane voltage on [Ca2+]i was found to depend on the concentration of internal Na+ ([Na+]i). Voltage clamp hyperpolarizing pulses were found to cause a reduction of [Ca2+]i. For depolarizing pulses a relationship between [Ca2+]i gain and [Na+]i indicates that Ca2+ entry is sigmoid with a half maximal response at 22 mM Na+. This Ca2+ entry is a steep function of [Na+]i suggesting that 4 Na+ ions are required to promote the influx of 1 Ca2+. There was little change in Ca2+ entry with depolarizing pulses when [Ca2+]o is varied from 1 to 10mM, while at 50mM [Ca2+]o calcium entry clearly increases suggesting an alternate pathway from that of Na+/Ca2+ exchange. This entry of Ca2+ at high [Ca2+]o, however, was not blocked by Cs+o. The results obtained lend further support to the notion that Na+/Ca2+ exchange in squid giant axon is sensitive to membrane voltage no matter whether this is applied as a constant change in membrane potential or as an intermittent one.  相似文献   

11.
Sodium and calcium currents in dispersed mammalian septal neurons   总被引:2,自引:0,他引:2       下载免费PDF全文
Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.  相似文献   

12.
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.  相似文献   

13.
The effects of extracellular K+ on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) were examined in mouse aorta, mouse aorta endothelial cells (MAEC), and human umbilical vein endothelial cells (HUVEC). In mouse aortic rings precontracted with prostaglandin F2alpha or norepinephrine, an increase in extracellular K+ concentration ([K+]o) from 6 to 12 mM inhibited EDR concentration dependently. In endothelial cells, an increase in [K+]o inhibited the agonist-induced [Ca2+]i increase concentration dependently. Similar to K+, Cs+ also inhibited EDR and the increase in [Ca2+]i concentration dependently. In current-clamped HUVEC, increasing [K+]o from 6 to 12 mM depolarized membrane potential from -32.8 +/- 2.7 to -8.6 +/- 4.9 mV (n = 8). In voltage-clamped HUVEC, depolarizing the holding potential from -50 to -25 mV decreased [Ca2+]i significantly from 0.95 +/- 0.03 to 0.88 +/- 0.03 microM (n = 11, P < 0.01) and further decreased [Ca2+]i to 0.47 +/- 0.04 microM by depolarizing the holding potential from -25 to 0 mV (n = 11, P < 0.001). Tetraethylammonium (1 mM) inhibited EDR and the ATP-induced [Ca2+]i increase in voltage-clamped MAEC. The intermediate-conductance Ca2+-activated K+ channel openers 1-ethyl-2-benzimidazolinone, chlorozoxazone, and zoxazolamine reversed the K+-induced inhibition of EDR and increase in [Ca2+]i. The K+-induced inhibition of EDR and increase in [Ca2+]i was abolished by the Na+-K+ pump inhibitor ouabain (10 microM). These results indicate that an increase of [K+]o in the physiological range (6-12 mM) inhibits [Ca2+]i increase in endothelial cells and diminishes EDR by depolarizing the membrane potential, decreasing K+ efflux, and activating the Na+-K+ pump, thereby modulating the release of endothelium-derived vasoactive factors from endothelial cells and vasomotor tone.  相似文献   

14.
Neuronal nicotinic acetylcholine (ACh)-activated currents in rat parasympathetic ganglion cells were examined using whole-cell and single-channel patch clamp recording techniques. The whole-cell current-voltage (I-V) relationship exhibited strong inward rectification and a reversal (zero current) potential of -3.9 mV in nearly symmetrical Na+ solutions (external 140 mM Na+/internal 160 mM Na+). Isosmotic replacement of extracellular Na+ with either Ca2+ or Mg2+ yielded the permeability (Px/PNa) sequence Mg2+ (1.1) > Na+ (1.0) > Ca2+ (0.65). Whole-cell ACh-induced current amplitude decreased as [Ca2+]0 was raised from 2.5 mM to 20 mM, and remained constant at higher [Ca2+]0. Unitary ACh-activated currents recorded in excised outside-out patches had conductances ranging from 15-35 pS with at least three distinct conductance levels (33 pS, 26 pS, 19 pS) observed in most patches. The neuronal nicotinic ACh receptor-channel had a slope conductance of 30 pS in Na+ external solution, which decreased to 20 pS in isotonic Ca2+ and was unchanged by isosmotic replacement of Na+ with Mg2+. ACh-activated single channel currents had an apparent mean open time (tau 0) of 1.15 +/- 0.16 ms and a mean burst length (tau b) of 6.83 +/- 1.76 ms at -60 mV in Na+ external solution. Ca(2+)-free external solutions, or raising [Ca2+]0 to 50-100 mM decreased both the tau 0 and tau b of the nAChR channel. Varying [Ca2+]0 produced a marked decrease in NP0, while substitution of Mg2+ for Na+ increased NP0. These data suggest that activation of the neuronal nAChR channel permits a substantial Ca2+ influx which may modulate Ca(2+)-dependent ion channels and second messenger pathways to affect neuronal excitability in parasympathetic ganglia.  相似文献   

15.
The voltage dependence of steady state current produced by the forward mode of operation of the endogenous electrogenic Na+/K+ pump in Na(+)- loaded Xenopus oocytes has been examined using a two-microelectrode voltage clamp technique. Four experimental cases (in a total of 18 different experimental conditions) were explored: variation of external [Na+] ([Na]o) at saturating (10 mM) external [K+] ([K]o), and activation of pump current by various [K]o at 0, 15, and 120 mM [Na]o (tetramethylammonium replacement). Ionic current through K+ channels was blocked by Ba2+ (5 mM) and tetraethylammonium (20 mM), thereby allowing pump-mediated current to be measured by addition or removal of external K+. Control measurements and corrections were made for pump current run-down and holding current drift. Additional controls were done to estimate the magnitude of the inwardly directed pump-mediated current that was present in K(+)-free solution and the residual K(+)- channel current. A pseudo two-state access channel model is described in the Appendix in which only the pseudo first-order rate coefficients for binding of external Na+ and K+ are assumed to be voltage dependent and all transitions between states in the Na+/K+ pump cycle are assumed to be voltage independent. Any three-state or higher order model with only two oppositely directed voltage-dependent rate coefficients can be reduced to an equivalent pseudo two-state model. The steady state current-voltage (I-V) equations derived from the model for each case were simultaneously fit to the I-V data for all four experimental cases and yielded least-squares estimates of the model parameters. The apparent fractional depth of the external access channel for Na+ is 0.486 +/- 0.010; for K+ it is 0.256 +/- 0.009. The Hill coefficient for Na+ is 2.18 +/- 0.06, and the Hill coefficient for K+ (which is dependent on [Na]o) ranges from 0.581 +/- 0.019 to 1.35 +/- 0.034 for 0 and 120 mM [Na]o, respectively. The model provides a reasonable fit to the data and supports the hypothesis that under conditions of saturating internal [Na+], the principal voltage dependence of the Na+/K+ pump cycle is a consequence of the existence of an external high- field access channel in the pump molecule through which Na+ and K+ ions must pass in order to reach their binding sites.  相似文献   

16.
Binding of S-adenosylhomocysteine to hydroxyindole O-methyltransferase   总被引:1,自引:0,他引:1  
Mg2+-selective microelectrodes have been used to measure the intracellular free Mg2+ concentration in frog skeletal muscle fibers. Glass capillaries with a tip diameter of less than 0.4 micron were backfilled with the Mg2+ sensor, ETH 1117. In the absence of interfering ions, they gave Nernstian responses between 1 and 10 mM free Mg2+. In the presence of an ionic environment resembling the myoplasm, the microelectrode response was sub Nernstian (18-24 mV) but still useful. The electrodes were calibrated before and after muscle-fiber impalements . In quiescent fibers from sartorius muscle (Rana pipiens), with resting membrane potentials not less than -82 mV, the intracellular free Mg2+ concentration was 3.8 +/- 0.41 (S.E.) mM (n = 58) at 22 degrees C. No significant change in the intracellular free Mg2+ was observed following extensive (approx. 6 h) incubation in Mg2+-free media. Increasing the external concentration of magnesium from 4 to 20 mM (approx. 15 min) produced a slow and small enhancement (1.8 mM) of [Mg2+]i, which was fully reverted when the divalent cation was removed from the bathing solution. No change in ionic magnesium resting concentration was observed when the muscle fibers were treated either with caffeine 3 mM or with Na+-free solutions. In depolarized muscle fibers (-23 +/- 2.7 mV) treated with 100 mM K+, the myoplasmic [Mg2+] was 3.7 +/- 0.45 (S.E.) mM, n = 6, immediately after the spontaneous relaxation of the contracture. Similar determinations in muscle fibers during stimulation at low frequency (5 Hz), and after fatigue development, showed no changes in the concentration of free cytosolic Mg2+. These results point out that [Mg2+]i is not modified under these three different experimental conditions.  相似文献   

17.
Low conductance sodium channels in canine cardiac Purkinje cells.   总被引:4,自引:0,他引:4       下载免费PDF全文
Low conductance sodium (Na) channels have been observed in nerve, skeletal muscle, and cardiac cells. In cardiac tissues the higher amplitude, more commonly observed Na channel was first investigated in detail by Cachelin et al. (Cachelin, A.B., J.E. de Peyer, S. Kokubun, and H. Reuter, 1983, J. Physiol. (Lond.), 340:389-402). They also reported low amplitude Na channel events. We have studied this low conductance Na channel in single canine cardiac Purkinje cells using cell-attached patches. Patch pipette solutions contained either 140 or 280 mM NaCl, and cells were bathed in a solution of 150 mM KCl to bring their resting potential close to zero. In 140 mM Na+, during steps to -50 mV, the lower and higher openings had amplitudes of 0.57 +/- 0.2 and 1.2 +/- 0.2 pA (means +/- SD of Gaussian fits). In 280 mM Na+ at -50 mV, amplitudes were 0.72 +/- 0.2 and 1.55 +/- 0.2 pA. Over a substantial voltage range, the lower events had amplitudes of about one-third that of the higher events. The frequency of the low conductance openings varied in different patches from zero to 22% of total openings. Histograms of open durations and latencies at several voltages suggested no difference in kinetics between the two channel events. The behavior of the low conductance channels was more consistent with a second population of channels rather than a second open state.  相似文献   

18.
The cardiac sodium current was studied in guinea pig ventricular myocytes using the cell-attached patch voltage clamp at 37 degrees C in the presence of 145 mM external sodium concentration. When using large patch pipettes (access resistance, 1-2 M omega), the capacity current transient duration was typically 70 microseconds for voltage clamp steps up to 150 mV. At 37 degrees C the maximum inward sodium current peaked in approximately 200 microseconds after the onset of a clamp step and at this strong depolarization, less than 10% of the sodium current developed during the capacity transient. The sodium current developed smoothly and the descending limb of the current-voltage relationship usually spanned a range of 40 mV. Moreover, currents reduced by inactivation of sodium channels could be scaled to superimpose on the maximum current. Current tails elicited by deactivation followed a monoexponential time course that was very similar for currents of different sizes. Data obtained over a range of temperatures (15 degrees-35 degrees C) showed that the steady-state inactivation and conductance-voltage curves were shifted to more negative voltages at lower temperatures. These results demonstrate the feasibility of investigating the sodium current of mammalian cardiac cells at 37 degrees C in normal physiological solutions.  相似文献   

19.
The stoichiometry and voltage dependence of the Na/K pump were studied in internally dialyzed, voltage-clamped squid giant axons by simultaneously measuring, at various membrane potentials, the changes in Na efflux (delta phi Na) and holding current (delta I) induced by dihydrodigitoxigenin (H2DTG). H2DTG stops the Na/K pump without directly affecting other current pathways: (a) it causes no delta I when the pump lacks Na, K, Mg, or ATP, and (b) ouabain causes no delta I or delta phi Na in the presence of saturating H2DTG. External K (Ko) activates Na efflux with Michaelis-Menten kinetics (Km = 0.45 +/- 0.06 mM [SEM]) in Na-free seawater (SW), but with sigmoid kinetics in approximately 400 mM Na SW (Hill coefficient = 1.53 +/- 0.08, K1/2 = 3.92 +/- 0.29 mM). H2DTG inhibits less strongly (Ki = 6.1 +/- 0.3 microM) in 1 or 10 mM K Na-free SW than in 10 mM K, 390 mM Na SW (1.8 +/- 0.2 microM). Dialysis with 5 mM each ATP, phosphoenolpyruvate, and phosphoarginine reduced Na/Na exchange to at most 2% of the H2DTG-sensitive Na efflux. H2DTG sensitive but nonpump current caused by periaxonal K accumulation upon stopping the pump, was minimized by the K channel blockers 3,4-diaminopyridine (1 mM), tetraethylammonium (approximately 200 mM), and phenylpropyltriethylammonium (20-25 mM) whose adequacy was tested by varying [K]o (0-10 mM) with H2DTG present. Two ancillary clamp circuits suppressed stray current from the axon ends. Current and flux measured from the center pool derive from the same membrane area since, over the voltage range -60 to +20 mV, tetrodotoxin-sensitive current and Na efflux into Na-free SW, under K-free conditions, were equal. The stoichiometry and voltage dependence of pump Na/K exchange were examined at near-saturating [ATP], [K]o and [Na]i in both Na-free and 390 mM Na SW. The H2DTG-sensitive F delta phi Na/delta I ratio (F is Faraday's constant) of paired measurements corrected for membrane area match, was 2.86 +/- 0.09 (n = 8) at 0 mV and 3.05 +/- 0.13 (n = 6) at -60 to -90 mV in Na-free SW, and 2.72 +/- 0.09 (n = 7) at 0 mV and 2.91 +/- 0.21 (n = 4) at -60 mV in 390 mM Na SW. Its overall mean value was 2.87 +/- 0.07 (n = 25), which was not significantly different from the 3.0 expected of a 3 Na/2 K pump.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Inward rectifier (IR) currents were studied in bovine pulmonary artery endothelial cells in the whole-cell configuration of the patch-clamp technique with extracellular K+ concentrations, [K+]o, ranging from 4.5 to 160 mM. Whether the concentration of free Mg2+ in the intracellular solution, [Mg2+]i, was 1.9 mM or nominally 0, the IR exhibited voltage- and time-dependent gating. The IR conductance was activated by hyperpolarization and deactivated by depolarization. Small steady-state outward IR currents were present up to approximately 40 mV more positive than the K+ reversal potential, EK, regardless of [Mg2+]i. Modeled as a first-order C in equilibrium O gating process, both the opening rate, alpha, and the closing rate, beta, were exponentially dependent on voltage, with beta more steeply voltage dependent, changing e-fold for 9 mV compared with 18 mV for an e-fold change in alpha. Over all [K+]o studied, the voltage dependence of alpha and beta shifted along with EK, as is characteristic of IR channels in other cells. The steady-state voltage dependence of the gating process was well described by a Boltzmann function. The half-activation potential was on average approximately 7 mV negative to the observed reversal potential in all [K+]o regardless of [Mg2+]i. The activation curve was somewhat steeper when Mg-free pipette solutions were used (slope factor, 4.3 mV) than when pipettes contained 1.9 mM Mg2+ (5.2 mV). The simplest interpretation of these data is that IR channels in bovine pulmonary artery endothelial cells have an intrinsic gating mechanism that is not due to Mg block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号