共查询到20条相似文献,搜索用时 8 毫秒
1.
In this prospective study, a quantitative determination of histamine and tryptase in nasal secretions after nasal phosphate buffered saline (PBS) and allergen challenge was performed in 18 atopic patients who were compared with ten non-allergic healthy volunteers. The aim of the study was to determine the normal and pathological concentrations of these important mediators in nasal secretions. The second objective was to test the relevance of these two mast cell secreted mediators after nasal challenge. Results showed that the concentrations of tryptase in almost all samples were under the minimal detection limit (< 0.5 muU/g) and only a sigrtificant increase of tryptase (median, 28 muU/g) occurred immediately after nasal allergen challenge in the patient group. Histamine concentration significantly increased after every nasal PBS challenge (median, 69 ng/g after first PBS challenge and 165 ng/g after second PBS challenge) in the control group, as well as in the patient group after both PBS (median, 69 ng/g) and allergen (median, 214 ng/g) challenge. On the other hand, a rapid onset of sneezing and increase in nasal airway resistance was experienced only in the patient group after nasal allergen challenge, but did not occur after PBS challenge even though the histamine concentrations significantly increased in both groups. This study suggests that tryptase is a more preferable marker than histamine in quantitative monitoring of mast cell activation especially during the early phase nasal allergic reaction. 相似文献
2.
Refractoriness for ultrasonically nebulized distilled water and histamine after histamine challenge 总被引:1,自引:0,他引:1
Refractoriness for bronchial provocation frequently occurs after different challenge tests used to assess bronchial hyperresponsiveness in asthmatic patients. We investigated whether histamine inhalation could cause refractoriness for bronchoconstriction induced by ultrasonically nebulized distilled water (UNDW) and whether histamine causes tachyphylaxis for a subsequent histamine challenge in nine stable asthmatic patients. Preinhalation of histamine induced a significant diminished bronchoconstrictor response to UNDW cumulative dose of inhaled UNDW causing a 20% fall in forced expired volume in 1 s. The mean increased from 3.5 +/- 0.8 to 11.8 +/- 2.6 (SE) ml after histamine challenge (P less than 0.01). However, repeated inhalation of histamine did not change the bronchoconstrictor response to histamine within 1 h after rechallenge (P greater than 0.5). The magnitude of refractoriness for UNDW inhalation after preinhalation of histamine was correlated to the bronchoconstrictor response to histamine (r = 0.73, P less than 0.05). We conclude that inhaled histamine can induce refractoriness for UNDW, which seems to be related to the degree of bronchial hyperresponsiveness. 相似文献
3.
Release of histamine and adrenaline in vivo following intravenous administration of neurotensin 总被引:1,自引:0,他引:1
Plasma histamine levels of rats anesthetized with pentobarbital sodium were significantly increased by intravenous administration of neurotensin (NT, 1 nmole/kg) with the maximum effect at 3 min, and a return to the initial levels in 20 min. Treatment of animals with compound 48/80 or disodium cromoglycate completely inhibited the elevation of histamine level by NT, however, treatment with reserpine or diphenhydramine and adrenalectomy did not affect the elevation. Plasma adrenaline levels increased transiently 1 min after NT injection, and adrenalectomy and treatment with compound 48/80 or diphenhydramine markedly reduced the elevation of adrenaline levels after NT injection. Plasma levels of noradrenaline were unchanged upon NT injection. These results provide direct evidence of the release of endogenous histamine and adrenaline following NT administration, and suggest the contribution of these amines to the NT-induced triphasic blood pressure responses (the first depressor, second pressor and third depressor responses) reported previously. 相似文献
4.
M V Sánchez-Cifuentes M L Rubio M Ortega G Peces-Barba M Paiva S Verbanck N G Mangado 《Journal of applied physiology》2000,88(3):821-826
We studied the early response to ovalbumin challenge in sensitized Brown-Norway rats through its effect on N(2), He, and SF(6) phase III slopes of the single-breath washout and on indexes of lung function. Sensitized rats showed varying degrees of response in terms of pulmonary pressure (PL), with increases ranging between 125 and 225% of baseline. The sensitized rats presented decreased quasistatic compliance, forced vital capacity, and end-expiratory flow, with all three lung function indexes showing a significant negative correlation with corresponding PL values. They also showed significant positive correlations of PL with the N(2), He, and SF(6) phase III slopes, reflecting diffusion-convection-dependent inhomogeneities generated by conformation changes throughout the entire rat lung. In addition, the rats showing the most marked PL increases (>150% baseline PL) also revealed a reversal of the SF(6)-He slope difference because of a more marked SF(6) than He slope increase. This latter finding suggests that the degree of structural heterogeneity during early response is even more marked in the most peripheral rat lung generations. 相似文献
5.
6.
7.
Molinari J. F.; Moore W. R.; Clark J.; Tanaka R.; Butterfield J. H.; Abraham W. M. 《Journal of applied physiology》1995,79(6):1966-1970
8.
D L Kellogg 《Journal of applied physiology》2006,100(5):1709-1718
This review focuses on the neural and local mechanisms that have been demonstrated to effect cutaneous vasodilation and vasoconstriction in response to heat and cold stress in vivo in humans. First, our present understanding of the mechanisms by which sympathetic cholinergic nerves mediate cutaneous active vasodilation during reflex responses to whole body heating is discussed. These mechanisms include roles for cotransmission as well as nitric oxide (NO). Next, the mechanisms by which sympathetic noradrenergic nerves mediate cutaneous active vasoconstriction during whole body cooling are reviewed, including cotransmission by neuropeptide Y (NPY) acting through NPY Y1 receptors. Subsequently, current concepts for the mechanisms that effect local cutaneous vascular responses to direct skin warming are examined. These mechanisms include the roles of temperature-sensitive afferent neurons as well as NO in causing vasodilation during local heating of skin. This section is followed by a review of the mechanisms that cause local cutaneous vasoconstriction in response to direct cooling of the skin, including the dependence of these responses on intact sensory and sympathetic, noradrenergic innervation as well as roles for nonneural mechanisms. Finally, unresolved issues that warrant further research on mechanisms that control cutaneous vascular responses to heating and cooling are discussed. 相似文献
9.
Heeley EL Hohlfeld JM Krug N Postle AD 《American journal of physiology. Lung cellular and molecular physiology》2000,278(2):L305-L311
Electrospray ionization mass spectrometry was used to quantify phosphatidylcholine (PC) and phosphatidylglycerol (PG) molecular species in bronchoalveolar lavage fluid (BALF) from control and mild asthmatic subjects after local allergen challenge. BALF was obtained from 5 control and 13 asthmatic subjects before and 24 h after segmental allergen and saline challenge. There were no differences in the ratio of total PC to total PG or in the molecular species composition of PC or PG between the asthmatic and control groups under basal conditions. Allergen challenge in asthmatic but not in control volunteers caused a significant increase in the PC-to-PG ratio because of increased concentrations of PC species containing linoleic acid (16:0/18:2 PC, 18:0/18:2 PC, and 18:1/18:2 PC). These molecular species were characteristic of plasma PC analyzed from the same subjects, strongly suggesting that the altered PC composition in BALF in asthmatic subjects after allergen challenge was due to infiltration of plasma lipoprotein, not to catabolism of surfactant phospholipid. Interactions between surfactant and lipoprotein infiltrate may contribute to surfactant dysfunction and potentiate disease severity in asthma. 相似文献
10.
G Ferretti H E Berg A E Minetti C Moia S Rampichini M V Narici 《Journal of applied physiology》2001,90(2):431-435
A reduction in lower limb cross-sectional area (CSA) occurs after bed rest (BR). This should lead to an equivalent reduction in maximal instantaneous muscular power (W(p)) if the body segments' lengths remain unchanged. W(p) was determined during maximal jumps off both feet on a force platform before and on days 2, 6, 10, 32, and 48 after a 42-day duration BR. CSA of thigh muscles was measured by magnetic resonance imaging before and on day 5 after BR. Before BR, W(p) was 3.63 +/- 0.43 kW or 48.6 +/- 3.3 W/kg. On days 2 and 6 after BR, W(p) was reduced by 23.7 +/- 6.9 and 22.7 +/- 5.4% (P < 0.01), respectively. Thigh extensors CSA (CSAEXT) was 16.7 +/- 4.7% (P < 0.01) lower than before. When normalized per CSAEXT, W(p) was reduced by only 4.8 +/- 4.5% (P < 0.05). By day 48 of recovery, W(p) had returned to baseline values. Therefore, if W(p) is appropriately normalized for CSA of the extensor muscles, the reduction in CSAEXT explains most of the decrease in W(p) decrease after BR. Other factors such as a deficit in neural activation or a decrease in fiber-specific tension may account for only 5% of the W(p) loss after BR. 相似文献
11.
Tigani B Cannet C Karmouty-Quintana H Blé FX Zurbruegg S Schaeublin E Fozard JR Beckmann N 《American journal of physiology. Lung cellular and molecular physiology》2007,292(3):L644-L653
Magnetic resonance imaging (MRI) has been used previously to follow noninvasively inflammatory processes in rat acute models of lung inflammation. Here the technique was applied to a model involving repeated intratracheal administration of ovalbumin (OA). Anatomical MRI was performed at different time points with respect to a single or multiple OA challenges in Brown Norway rats actively sensitized to the allergen. Vascular permeability was assessed using dynamic contrast-enhanced MRI (DCE-MRI). Bronchoalveolar lavage (BAL) fluid analysis and histology were performed to validate the MRI data. The time course of MRI signals after a single OA challenge reached a maximum at 48 h and decreased significantly at 96 h. After the second and subsequent challenges, the maximum signal occurred at 6 h with a time-dependent decline over the remainder of the time course. A reduction of the inflammatory response following repeated administration of OA was also detected by BAL fluid analysis. The decrease in vascular permeability assessed by DCE-MRI in repeatedly OA-challenged rats was consistent with the thickening of the vascular wall for vessels of diameter up to 300 microm revealed by histology. Angiogenesis of vessels smaller than 30 microm was also detected histologically. These results suggest that MRI can be used to detect the inflammatory response and vascular remodeling associated with chronic airway inflammation in rat models involving repeated administration of allergen. As the contrast agent used in the DCE-MRI experiments is approved for clinical use, there is potential to translate the approach to patients. 相似文献
12.
Kellogg DL Zhao JL Wu Y 《American journal of physiology. Heart and circulatory physiology》2008,295(1):H123-H129
Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (T(loc)) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist N(G)-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased T(loc) and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF / MAP). In protocol 1, T(loc) was controlled with LDF/local heating units. T(loc) initially was held at 34 degrees C and then increased to 41.5 degrees C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34 degrees C T(loc) did not differ between l-NAA-treated and untreated sites (P > 0.05). Local skin warming to 41.5 degrees C T(loc) increased CVC at both sites. This response was attenuated at l-NAA-treated sites (P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites (P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites (P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased T(loc), but not during reflex responses to whole body heat stress. 相似文献
13.
Sumita B Khatri Jeffrey Hammel Mani S Kavuru Serpil C Erzurum Raed A Dweik 《Journal of applied physiology》2003,95(1):436-40; discussion 435
Exhaled nitric oxide (NO) levels are high in asthmatic subjects and increase with exacerbations. We hypothesized that higher levels of NO observed during asthma exacerbations are due to increased synthesis of NO. Exhaled NO and peak flows were measured in 11 asthmatic and 9 healthy control subjects before and after experimental asthmatic response induced by whole lung allergen challenge. Baseline peak flows of asthmatics were significantly lower than controls and decreased significantly immediately after challenge (P = 0.004). NO was measured by collecting exhaled breaths without breath hold (NO0) and after a 15-s breath hold (NO15). The rate of NO accumulation over time [parts/billion per second (ppb/s)] was calculated by DeltaNO/Deltat = (NO15 - NO0)/15, where Delta denotes a change and t is time. The NO accumulation rates in asthmatic and control subjects were similar at baseline; however, NO accumulation at 24 h increased threefold from baseline in asthmatic compared with control subjects (asthmatic subjects, 0.6 +/- 0.2 ppb/s; control subjects, 0.2 +/- 0.1 ppb/s; P = 0.01). Our study suggests that increased NO during an asthma exacerbation is due to increased synthesis, perhaps by increased expression of NO synthases. 相似文献
14.
15.
16.
Brett J Wong Sarah J Williams Christopher T Minson 《Journal of applied physiology》2006,100(2):535-540
The precise mechanism(s) underlying the thermal hyperemic response to local heating of human skin are not fully understood. The purpose of this study was to investigate a potential role for H1 and H2 histamine-receptor activation in this response. Two groups of six subjects participated in two separate protocols and were instrumented with three microdialysis fibers on the ventral forearm. In both protocols, sites were randomly assigned to receive one of three treatments. In protocol 1, sites received 1) 500 microM pyrilamine maleate (H1-receptor antagonist), 2) 10 mM L-NAME to inhibit nitric oxide synthase, and 3) 500 microM pyrilamine with 10 mM NG-nitro-L-arginine methyl ester (L-NAME). In protocol 2, sites received 1) 2 mM cimetidine (H2 antagonist), 2) 10 mM L-NAME, and 3) 2 mM cimetidine with 10 mM L-NAME. A fourth site served as a control site (no microdialysis fiber). Skin sites were locally heated from a baseline of 33 to 42 degrees C at a rate of 0.5 degrees C/5 s, and skin blood flow was monitored using laser-Doppler flowmetry (LDF). Cutaneous vascular conductance was calculated as LDF/mean arterial pressure. To normalize skin blood flow to maximal vasodilation, microdialysis sites were perfused with 28 mM sodium nitroprusside, and control sites were heated to 43 degrees C. In both H1 and H2 antagonist studies, no differences in initial peak or secondary plateau phase were observed between control and histamine-receptor antagonist only sites or between L-NAME and L-NAME with histamine receptor antagonist. There were no differences in nadir response between L-NAME and L-NAME with histamine-receptor antagonist. However, the nadir response in H1 antagonist sites was significantly reduced compared with control sites, but there was no effect of H2 antagonist on the nadir response. These data suggest only a modest role for H1-receptor activation in the cutaneous response to local heating as evidenced by a diminished nadir response and no role for H2-receptor activation. 相似文献
17.
18.
Daisaku Michikami Atsunori Kamiya Qi Fu Satoshi Iwase Tadaaki Mano Kenji Sunagawa 《Journal of applied physiology》2004,96(1):107-114
We investigated the effect of head-down bed rest (HDBR) for 14 days on thermoregulatory sweating and cutaneous vasodilation in humans. Fluid intake was ad libitum during HDBR. We induced whole body heating by increasing skin temperature for 1 h with a water-perfused blanket through which hot water (42 degrees C) was circulated. The experimental room was air-conditioned (27 degrees C, 30-40% relative humidity). We measured skin blood flow (chest and forearm), skin temperatures (chest, upper arm, forearm, thigh, and calf), and tympanic temperature. We also measured sweat rate by the ventilated capsule method in which the skin area for measurement was drained by dry air conditioned at 27 degrees C under similar skin temperatures in both trials. We calculated cutaneous vascular conductance (CVC) from the ratio of skin blood flow to mean blood pressure. From tympanic temperature-sweat rate and -CVC relationships, we assessed the threshold temperature and sensitivity as the slope response of variables to a given change in tympanic temperature. HDBR increased the threshold temperature for sweating by 0.31 degrees C at the chest and 0.32 degrees C at the forearm, whereas it reduced sensitivity by 40% at the chest and 31% at the forearm. HDBR increased the threshold temperature for cutaneous vasodilation, whereas it decreased sensitivity. HDBR reduced plasma volume by 11%, whereas it did not change plasma osmolarity. The increase in the threshold temperature for sweating correlated with that for cutaneous vasodilation. In conclusion, HDBR attenuated thermoregulatory sweating and cutaneous vasodilation by increasing the threshold temperature and decreasing sensitivity. HDBR increased the threshold temperature for sweating and cutaneous vasodilation by similar magnitudes, whereas it decreased their sensitivity by different magnitudes. 相似文献
19.
Respiratory resistance with histamine challenge by single-breath and forced oscillation methods 总被引:3,自引:0,他引:3
Bates J. H.; Decramer M.; Zin W. A.; Harf A.; Milic-Emili J.; Chang H. K. 《Journal of applied physiology》1986,61(3):873-880
Relaxed expirations were obtained from five anesthetized dogs under control conditions and during various rates of intravenous infusion of histamine. All volume vs. time curves obtained from 20 ms to 2 s after the start of expiration were poorly described by a single exponential function but were fitted very well by a biexponential function. The resistance of the respiratory system as a function of frequency from 2 to 26 Hz was also determined by the forced oscillation method in the same dogs. Three two-compartment models of the respiratory system were identified from the exponentials fitted to the relaxed expiration data, and the one that had the most plausible parameter values under control conditions consisted of a homogeneous lung compartment connected to a viscoelastic compartment. Although a two-compartment model is arguably appropriate for describing relaxed expirations in normal dogs, physiological considerations suggest that there should be more than two interacting components with histamine infusion. We cannot identify all these components from our data, however. The equivalent complex impedance of the respiratory system was also calculated from the biexponential curves and showed significant variation in resistance over the frequency range from 0 to 2 Hz and negligible variation above 2 Hz. The calculated resistances at 2 Hz were consistently higher than those obtained by the forced oscillation method, which may be due to the nonlinear behavior of the respiratory system during relaxed expiration. We conclude that the single-breath and forced oscillation methods should be viewed as providing complimentary information about respiratory resistance. 相似文献
20.
Comparison of airway and blood eosinophil function after in vivo antigen challenge. 总被引:12,自引:0,他引:12
J B Sedgwick W J Calhoun R F Vrtis M E Bates P K McAllister W W Busse 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(11):3710-3718
Eosinophils (EOS) are important effector cells in allergic diseases and asthma. However, functional characteristics of the EOS have been derived primarily from studies of blood cells, and it is unlikely that such assessments reflect events occurring in tissues or airways. To establish more precisely the function of airway EOS, segmental Ag challenge was used to elicit and isolate large numbers of these cells. Airway, as well as blood, EOS were isolated from allergic patients 48 h after segmental Ag challenge. Both blood and bronchoalveolar lavage (BAL) EOS were fractionated over Percoll density gradients; by using this protocol, three density-distinct populations of pure (>90%) EOS were obtained from BAL fluid (1.100, 1.095, and 1.090 g/ml) and one from blood (1.100 g/ml). The functions of these various populations were compared by measuring superoxide generation, adherence to collagen and endothelial cell monolayers, cell surface receptors, and in vitro survival. BAL EOS of all three densities had greater superoxide generation and adherence with FMLP activation than did corresponding blood EOS. In contrast, blood and airway EOS responded similarly to PMA. BAL EOS also had increased expression of CD11b/CD18 and HLA-DR. The intracellular calcium concentration ([Ca2+]i) was measured with the fluorescent marker indo-1/acetoxymethyl ester. FMLP caused a greater and more sustained increase in [Ca2+]i with BAL than blood EOS. EGTA blocked the sustained component of the [Ca2+]i response to FMLP. Our findings indicate that BAL EOS have an enhanced [Ca2+]i response to activation that may contribute to their functional up-regulation. 相似文献