首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Pieces of fetal midbrain raphe containing serotonergic and dopaminergic neurons were transplanted into the leptomeningeal tissue (see Fig. 3) of adult host rats that had previously been denervated by treatment with 5,6-dihydroxytryptamine. One, 2 and 5 months after transplantation, the rate of neuronal survival in the grafted tissue and the extent of axonal outgrowth into the host brain were studied by use of serotonin and tyrosine hydroxylase (TH) immunohistochemistry. The survival rate of the grafts in the 1-month group was approximately 70%. Neurons containing either serotonin or catecholamine were demonstrated by means of immunocytochemical procedures in the grafts. Two and 5 months after transplantation, serotonin-immunoreactive nerve fibers were densely distributed throughout the graft tissue, while TH-immunoreactive fiber elements were restricted to an area near the somata of TH-positive neurons. Numerous serotonin-immunoreactive fibers derived from the transplant were found in the leptomeningeal tissue surrounding the graft, on the wall of neighboring blood vessels, and also in the adjacent parenchyma of the host brain. Outgrowing TH-immunoreactive nerve fibers were not observed in the host brain, although such elements occurred in the leptomeningeal tissue and the wall of the larger blood vessels. These results suggest that the serotonergic and catecholaminergic (dopaminergic) neurons located in transplants of the raphe nuclei show different patterns when reinnervating the host tissue.  相似文献   

2.
Vascular permeability and endothelial glycocalyx were examined in young adult spontaneously hypertensive rats (SHR), stroke-prone SHR (SHRSP), and Wistar Kyoto rats (WKY) as a control, in order to determine earlier changes in the blood-brain barrier (BBB) in the hypothalamus in chronic hypertension. These rats were injected with horseradish peroxidase (HRP) as an indicator of vascular permeability. Brain slices were developed with a chromogen and further examined with cationized ferritin, a marker for evaluating glycocalyx. Staining for HRP was seen around vessels in the hypothalamus of SHR and SHRSP, but was scarce in WKY. The reaction product of HRP appeared in the abluminal pits of endothelial cells and within the basal lamina of arterioles, showing increased vascular permeability in the hypothalamus of SHR and SHRSP, whereas there were no leaky vessels in the frontal cortex of SHR and SHRSP, or in both areas of WKY. The number of cationized ferritin particles binding to the capillary endothelial cells was decreased in the hypothalamus of SHR and SHRSP, while the number decreased in the frontal cortex of SHRSP, compared with those in WKY. Cationized ferritin binding was preserved in some leaky arterioles, while it was scarce or disappeared in other leaky vessels. These findings suggest that BBB disruption occurs in the hypothalamus of 3-month-old SHR and SHRSP, and that endothelial glycocalyx is markedly damaged there without a close relationship to the early changes in the BBB.  相似文献   

3.
The development of the blood brain barrier (BBB) and the vessel permeability to horseradish peroxidase (HRP) have been analyzed in the optic tectum of chick embryos developed under normal and hypoxic conditions, normal chickens, and chickens born from fertilized eggs incubated under hypoxia but kept in the open air after hatching. The development of chick embryos under a situation of chronic hypoxia was obtained by covering, a half of the shell of fertilized eggs with a thick layer of melted paraffin to obtain a reduction of the exchanges normally occurring between embryonic blood vessels and open air. In the tecta developed in normal conditions the BBB to HRP begins to form on the 14th i.d. and it is complete on the 17th i.d. The O2 deprivation, producing remarkable alterations of the neural substratum, does not affect the development of the BBB to HRP, since in chicks of 17 i.d., grown up under hypoxic conditions, the tectal microvessels are not permeable to the tracer, being it mainly confined within the vessel lumina. Nevertheless in specimens kept under hypoxia until hatching, areas of perivascular spread of the marker have been observed corresponding to the vessel wall tracts presumably damaged by the experimental conditions along which the BBB to HRP is not complete.  相似文献   

4.
Abstract: Native horseradish peroxidase (HRP) and the lectin wheat germ agglutinin (WGA) conjugated to HRP are protein probes represented in the blood-brain barrier (BBB) literature for elucidating morphological routes of passage between blood and brain. We report the application of established pharmacokinetic methods, e.g., multiple-time regression analysis and capillary depletion technique, to measure and compare bidirectional rates of passage between blood and brain for radioactive iodine-labeled HRP (I-HRP), WGA-HRP (I-WGA-HRP), and the serum protein albumin (I-ALB) following administration of the probes intravenously (i.v.) or by intracerebroventricular (i.c.v.) injection in mice. The pharmacokinetic data are supplemented with light and electron microscopic analyses of HRP and WGA-HRP delivered i.v. or by i.c.v. injection. The rates of bidirectional movement between blood and brain are the same for coinjected I-HRP and I-ALB. Blood-borne HRP, unlike WGA-HRP, has unimpeded access to the CNS extracellularly through sites deficient in a BBB, such as the circumventricular organs and subarachnoid space/pial surface. Nevertheless, blood-borne I-WGA-HRP enters the brain ?10 times more rapidly than I-HRP and I-ALB. Separation of blood vessels from the neocortical parenchyma confirms the entry of blood-borne I-WGA-HRP to the brain and sequestration of I-WGA-HRP by cerebral endothelial cells. Nearly half the I-WGA-HRP radioactivity associated with cortical vessels is judged to be subcellular. Light microscopic results suggest the extracellular pathways into the brain available to blood-borne native HRP do not represent predominant routes of entry for blood-borne WGA-HRP. Ultrastructural analysis further suggests WGA-HRP is likely to undergo adsorptive transcytosis through cerebral endothelia from blood to brain via specific subcellular compartments within the endothelium. Entry of blood-borne I-WGA-HRP, but not of I-ALB, is stimulated with coinjected unlabeled WGA-HRP, suggesting the latter may enhance the adsorptive endocytosis of blood-borne I-WGA-HRP. With i.c.v. coinjection of I-WGA-HRP and I-ALB, I-WGA-HRP exits the brain more slowly than I-ALB. The brain to blood passage of I-WGA-HRP is nil with inclusion of unlabeled WGA-HRP, which does not alter the exit of I-ALB. Adsorptive endocytosis of i.c.v. injected WGA-HRP appears restricted largely to cells lining the ventricular cavities, e.g., ependymal and choroid plexus epithelia. In summary, the data suggest that the bidirectional rates of passage between brain and blood for native HRP are comparable to those for albumin. Blood-borne WGA-HRP is assessed to enter the brain more rapidly than native HRP and albumin, perhaps by the process of adsorptive transcytosis through BBB endothelia, but has difficulty leaving the CNS; the latter result may be due to avid binding and adsorptive endocytosis of WGA-HRP by exposed CNS cells. Neither native HRP nor WGA-HRP alters the integrity of the BBB to albumin. For this reason, both native HRP and WGA-HRP are suitable probes for investigating the permeability of the BBB to macromolecules in vivo.  相似文献   

5.
Summary Pieces of hairy skin tissue of fetal rat were transplanted into the anterior eye chamber of adult rats. The ability of autonomic and sensory nerve fibers from the host iris to innervate the grafted skin tissue was immunohistochemically and enzyme-histochemically examined using antisera against tyrosine hydroxylase (TH), substance P (SP), calcitonin gene-related peptide (CGRP) and vasoactive intestinal peptide (VIP), and a reaction medium for acetylcholinesterase (AchE). The grafted tissue was successfully implanted and connected with the host iris. Epidermis, dermis, subcutaneous tissue, hairs, hair follicles, sebaceous glands, and piloerector muscles developed in the graft. Two weeks after transplantation, TH-, SP-, and CGRP-immunoreactive fibers were observed in association with the blood vessels in the graft. Four weeks after transplantation, TH-immunoreactive fibers were distributed in the piloerector muscles, whereas SP-and CGRP-immunoreactive fibers were present around the hair follicles. VIP-immunoreactive and AchE-positive fibers were restricted to the host iris at all survival times. These results suggest that the outgrowth of autonomic and sensory nerve fibers from the host iris show target specificity for the grafted skin tissue.  相似文献   

6.
Summary The pineal organ of neonatal rats was transplanted to the frontal part of the cerebral cortex or the cerebral interhemispheric fissure of an isogenic adult rat to determine whether pineal differentiation and pinealopetal innervation are affected by aberrant neuronal influences. Transplants were fixed for immunohistochemistry at 1, 2 and 6 months after transplantation. When treated with an anti-serotonin antibody, cells in transplants from both locations showed intense immunoreactivity and a morphology comparable to intact pinealocytes, indicating that the transplanted pinealocytes had differentiated normally. Tyrosine hydroxylase immunohistochemistry revealed that new catecholamine fibers of central nervous origin extended only into the periphery and not into the core of transplants grafted within the cortex. However, numerous catecholamine fibers were found in transplants placed in the interhemispheric fissure. These fibers were often accompanied by blood vessels, suggesting that they derived from sympathetic ganglia. Serotonin fibers, which are densely distributed in the cerebral cortex, were seldom found to enter transplants from both locations. These observations indicate that pineal cells express their characteristic properties even when transferred to a foreign milieu and that they do not receive novel innervation from the central nerves that normally do not innervate the intact pineal body; the transplant thereby retains the property of selective pinealopetal innervation.  相似文献   

7.
Microsurgical transposition of fallopian tube and ovary has the potential of being an efficient therapeutic treatment in patients with tubal sterility. The Authors present their experience of microsurgical adnexal transplantation in rabbit by two different techniques: the first procedure by microvascular anastomosis of the ovarian vessels, the second one without vascular pedicle. Function is evaluated at various time after grafting by: exploratory laparotomy on day 30 to establish whether circulation to the grafts was still maintained; macroscopic and microscopic examination of ovaries and fallopian tubes. The microvascular techniques prove highly reliable in terms of immediate vascular patency rate but it is disappointing that 50% of the autografts has failed with blocked vessels by day 30. Perhaps this is due to the difficult techniques in anastomosing the ovarian vessels of small caliber. In spite of these outcomes the vascularized autografts were viable and functional after transplantation in contrast with the non-vascularized tubo-ovarian grafts which all failed. This experience encourages to believe that the microsurgical technique could be employed for homograft transplantation in woman with extensive ovarian and tubal damages.  相似文献   

8.
Human mesenchymal stem cells (hMSCs) derived from adult bone marrow represent a potentially useful source of cells for cell replacement therapy after nervous tissue damage. They can be expanded in culture and reintroduced into patients as autografts or allografts with unique immunologic properties. The aim of the present study was to investigate (i) survival, migration, differentiation properties of hMSCs transplanted into non-immunosuppressed rats after spinal cord injury (SCI) and (ii) impact of hMSC transplantation on functional recovery. Seven days after SCI, rats received i.v. injection of hMSCs (2×106 in 0.5 mL DMEM) isolated from adult healthy donors. Functional recovery was assessed by Basso–Beattie–Bresnahan (BBB) score weekly for 28 days. Our results showed gradual improvement of locomotor function in transplanted rats with statistically significant differences at 21 and 28 days. Immunocytochemical analysis using human nuclei (NUMA) and BrdU antibodies confirmed survival and migration of hMSCs into the injury site. Transplanted cells were found to infiltrate mainly into the ventrolateral white matter tracts, spreading also to adjacent segments located rostro-caudaly to the injury epicenter. In double-stained preparations, hMSCs were found to differentiate into oligodendrocytes (APC), but not into cells expressing neuronal markers (NeuN). Accumulation of GAP-43 regrowing axons within damaged white matter tracts after transplantation was observed. Our findings indicate that hMSCs may facilitate recovery from spinal cord injury by remyelinating spared white matter tracts and/or by enhancing axonal growth. In addition, low immunogenicity of hMSCs was confirmed by survival of donor cells without immunosuppressive treatment.  相似文献   

9.
C Kaur  E A Ling  W C Wong 《Acta anatomica》1986,125(2):132-137
The macrophagic amoeboid microglial cells in the corpus callosum of postnatal rats were labelled following an intravenous injection of horseradish peroxidase (HRP). The earliest time when these cells were labelled was 3 h after the injection of HRP in postnatal (1-10 days) rats. Similar cells around the mesencephalic aqueduct and the fourth ventricle were also labelled. These cells, however, were weakly labelled in developing (11-20 days) and unlabelled in weaning (21-30 days) rats. The results suggest that in the postnatal rats, the HRP passed through the endothelial lining of the blood vessels and was then ingested by the amoeboid microglial cells. In the developing and older rats, the wall of blood vessels had developed fully thereby preventing the free passage of HRP into the brain tissues.  相似文献   

10.
Arterial conduits are increasingly preferred for surgical bypass because of inherent functional properties conferred by arterial endothelial cells, especially nitric oxide production in response to physiologic stimuli. Here we tested whether endothelial progenitor cells (EPCs) can replace arterial endothelial cells and promote patency in tissue-engineered small-diameter blood vessels (4 mm). We isolated EPCs from peripheral blood of sheep, expanded them ex vivo and then seeded them on decellularized porcine iliac vessels. EPC-seeded grafts remained patent for 130 days as a carotid interposition graft in sheep, whereas non-seeded grafts occluded within 15 days. The EPC-explanted grafts exhibited contractile activity and nitric-oxide-mediated vascular relaxation that were similar to native carotid arteries. These results indicate that EPCs can function similarly to arterial endothelial cells and thereby confer longer vascular-graft survival. Due to their unique properties, EPCs might have other general applications for tissue-engineered structures and in treating vascular diseases.  相似文献   

11.
The objective of this study was to evaluate the use of Afp1m as a cryopreservative agent for skin by examining the transplanted skin histological architecture and mechanical properties following subzero cryopreservation. Thirty four (34) rats with an average weight of 208 ± 31 g (mean ± SD), were used. Twenty four (n = 24) rats were equally divided into four groups: (i) immediate non-cryopreserved skin autografts (onto same site), (ii) immediate non-cryopreserved skin autografts (onto different sites), (iii) skin autografts cryopreserved with glycerol for 72 h and (iv) skin autografts cryopreserved with Afp1m for 72 h at −4 °C. Rounded shaped full-thickness 1.5–2.5 cm in diameter skin was excised from backs of rats for the autograft transplantation. Non-cryopreserved or cryopreserved auto skin graft were positioned onto the wound defects and stitched. Non-transplanted cryopreserved and non-cryopreserved skin strips from other ten rats (n = 10) were allowed for comparative biomechanical test. All skin grafts were subjected to histological and mechanical examinations at the end of day 21. Histological results revealed that tissue architecture especially the epidermal integrity and dermal-epidermal junction of the Afp1m cryopreserved skin grafts exhibited better histological appearance, good preservation of tissue architecture and structural integrity than glycerolized skin. However, there was no significant difference among these groups in other histological criteria. There were no significant differences among the 4 groups in skin graft mechanical properties namely maximum load. In conclusion, Afp1m were found to be able to preserve the microstructure as well as the viability and function of the skin destined for skin transplantation when was kept at −4 °C for 72 h.  相似文献   

12.
The present study examines the morphological changes occurring in subcutaneous pancreatic tissue grafts (SPTG) and its effect on the host pancreatic islet cells in streptozotocin (STZ)-induced diabetic rats using morphological techniques. SPTG survived after 15 weeks of transplantation. Its acinar cells degenerated but the ducts and endocrine cells survived. The surviving and newly formed pancreatic tubules and endocrine cells filled the spaces left by degenerated acinar cells. Compartmentalization of the surviving parenchymatic tissues was observed, with the pancreatic tubules lying in the periphery of the graft and the endocrine tissue in the inner portion of the graft. Lymphocytes invaded the inner portion of the graft, conglomerating around endocrine cells. It was interesting, however, that, lymphocytes where not observed in the periphery of the grafts where most of the surviving pancreatic tubules lie. In addition to this, necrotic tissues were observed in the inner part of the graft. Fifteen weeks after transplantation into the subcutaneous region, insulin, glucagon, somatostatin and pancreatic polypeptide-immunoreactive cells were observed in many parts of the graft. In the peripheral parts of the grafts, large numbers of pancreatic tubules differentiated into endocrine cells. In conclusion, the ductal and endocrine cells of pancreatic tissue fragments survived in the subcutaneous region of rat with normal pattern of distribution.  相似文献   

13.
Surgical treatment of vascular disease has become common, creating the need for a readily available, small-diameter vascular graft. However, the use of synthetic materials is limited to grafts larger than 5-6 mm because of the frequency of occlusion observed with smaller-diameter prosthetics. An alternative to synthetic materials would be a biomaterial that could be used in the design of a tissue-engineered graft. We demonstrate that a small-diameter (4 mm) graft constructed from a collagen biomaterial derived from the submucosa of the small intestine and type I bovine collagen has the potential to integrate into the host tissue and provide a scaffold for remodeling into a functional blood vessel. The results obtained using a rabbit arterial bypass model have shown excellent hemostasis and patency. Furthermore, within three months after implantation, the collagen grafts were remodeled into cellularized vessels that exhibited physiological activity in response to vasoactive agents.  相似文献   

14.
Articular surface congruency and graft stability are considered essential factors in the success of osteochondral grafting; however, quantitative measures of short-term load bearing capacity of grafts implanted by the mosaicplasty technique have not been reported. The purpose of this study was to develop a live tissue in vitro model to examine short-term fixation strength of mosaicplasty autografts immediately after and 1 week following graft implantation. Cylindrical osteochondral autografts were implanted in vitro by the mosaicplasty technique on five pairs of porcine femoral condyles within one and a half hours of animal sacrifice. Immediately following the surgical procedure, graft push-in and pull-out strength tests as well as indentation tests to determine modulus of the surrounding cancellous bone were performed on half of the specimens from the distal femurs of each animal. The remaining specimens, matched for location in the contralateral leg, were incubated in culture medium for 7 days prior to performing the same set of mechanical tests. Averaged push-in and pull-out graft fixation strength decreased 44% from 135.7 to 75.5N over the 7-day period, while no change in modulus was detected in the surrounding cancellous bone. These in vitro results demonstrate a substantial deterioration of short-term fixation strength of mosaicplasty grafts from the immediate post-operative state. Such a reduction in short-term graft load bearing capacity may pose a threat to the surgically established articular surface congruency and blood vessels formed during the early stages of the healing response.  相似文献   

15.
High affinity choline uptake (HACU) was investigated in the hippocampal formation following fetal septal cell suspension transplants into rats with fimbria-fornix lesions. Nine-14 weeks after transplantation, HACU was markedly decreased in hippocampi from animals with fimbria-fornix lesions; this decrease was ameliorated by fetal septal cells transplanted into the host hippocampus. HACU related to septal transplantation was activated in vitro by K+, and in vivo by the administration of scopolamine and picrotoxin. These findings suggest that fetal septal cell transplantation can restore HACU in the host hippocampus following fimbria-fornix lesions, and that HACU related to the graft has pharmacological properties similar to those of the normal adult HACU system. The activation of HACU by picrotoxin, a gamma-aminobutyric acid (GABA) antagonist, suggests that transplanted cholinergic neurons receive either direct or indirect functional input from GABAergic afferents from the transplant and/or host hippocampus. Lesions of the fimbria-fornix also resulted in an increased binding to muscarinic receptors in the dorsal hippocampus. This increase in binding was not significantly ameliorated by intrahippocampal grafts of cholinergic neurons.  相似文献   

16.
Postnatal development of S-Ag and GFAP immunoreactivity in the in situ pineal glands of golden hamsters and gerbils was examined using the avidin-biotin-peroxidase immunohistochemical technique. S-Ag was present in the gerbil pineal gland on the first postnatal day (P1), whereas it did not appear in the hamster pineal until P6. GFAP-immunoreactive astrocytes were first observed in the hamster pineal gland on P7 and in the gerbil pineal gland on P10. The number of S-Ag-immunoreactive pinealocytes and GFAP-immunoreactive astrocytes in the pineal glands of hamsters and gerbils increased with increasing age from P7 to 3 weeks. By 4 weeks, strong S-Ag and GFAP immunoreactivity was observed in both hamster and gerbil pineal glands. GFAP-immunoreactive stellate astrocytes were distributed evenly throughout the gerbil superficial pineal gland, but they were more often located in the peripheral region of the hamster superficial pineal. For the pineal grafts, pineal glands from neonatal (3-5 day old) hamsters were transplanted into the third cerebral ventricle (infundibular recess or posterior third ventricle) or beneath the renal capsule of adult male hamsters. S-Ag immunoreactivity appeared in the pineal grafts within 1 week following transplantation. By 4 weeks the pineal grafts showed strong S-Ag immunoreactivity which was maintained until at least 12 weeks after transplantation. The time course of glial cell maturation in the cerebroventricular pineal grafts is generally parallel to the hamster pineal gland in situ before 4 weeks. By 12 weeks, however, more astrocytes differentiated and developed GFAP-immunoreactivity in the pineal grafts than in the in situ pineals. These studies have described the postnatal development of S-Ag and GFAP immunoreactivity in in situ pineal glands and in neonatal pineal grafts.  相似文献   

17.
The present study was designed to compare the morphological changes occurring in pancreatic tissue fragments transplanted into the anterior eye chamber (AEC) and the subcutaneous (SC) regions of the rat. Pancreatic tissue segments were removed from the tail end of the pancreas of neonatal rats and transplanted into the AEC and SC region of the neck of homologous rats. Five weeks after transplantation, the grafts were removed and processed for light microscopy, immunohistochemistry and radioimmunoassay. In both pancreatic tissue grafts, the acinar cells degenerated completely after transplantation. In contrast to this, insulin-, glucagon-, somatostatin- and pancreatic polypeptide-positive cells and pancreatic ducts survived equally well in both the AEC and SC grafts. The pattern and percentage distribution of insulin-, glucagon-, somatostatin- and PP-producing cells in the AEC and SC grafts was similar to that observed in normal pancreas. However, the percentage distribution of glucagon- and PP-containing cells was significantly (p < 0.03) lower in SC grafts when compared to normal. Radioimmunoassay showed that the AEC and SC pancreatic tissue grafts contained large quantities of insulin and glucagon. However, the insulin content of AEC was slightly but not significantly higher than that of SC grafts. The protein content of pancreatic tissue grafts in these transplantation sites was still significantly (p < 0.05) lower compared to normal. Lymphatic infiltration was also more conspicuous in SC grafts compared to AEC grafts. This infiltration by lymphatic cells was confined only to the endocrine portion of the graft. In conclusion, pancreatic tissue grafts survived in both the AEC and SC regions of rats but the AEC appears to be more conducive to graft survival than the SC region.  相似文献   

18.
We developed an experimental model to compare the efficacy of free vascularized bone grafts, conventional segmental autografts, matchstick autografts, and fresh segmental allografts in terms of their ability to reconstruct a 7-cm segmental diaphyseal defect created in the canine femur. Forty-five adult mongrel dogs were studied and followed for 6 to 12 months prior to sacrifice. Evaluation included radiologic assessment of graft incorporation and hypertrophy, histology, and biomechanical testing. These studies indicated that microsurgically revascularized autografts were superior to all other groups in terms of early incorporation, hypertrophy, and the highest mechanical strength to failure. Union of the bone graft to the recipient femur was achieved by 6 months in 25 of 26 autografts, and no difference in union rate was seen within the autograft group. However, only two of five allografts achieved bony union during this time interval. Arteriography, microangiography, fluorochrome, and histologic studies all supported the concept that microsurgically revascularized grafts, when successful, maintain their viability. However, the premise that all osteocytes survive in a successfully revascularized bone graft is open to question. While decalcified sections showed that all microsurgically revascularized grafts maintained normal viability in the central marrow and cancellous portions compared with the other three groups, the viability of cortical bone in the vascularized autografts was less clear. Undecalcified fluorochrome sections suggested that circulation was not preserved in all portions of the cortex. Revascularization of the nonvascularized autografts was complete at 3 months, while, in the avascular allografts, the process was not complete at 6 months.  相似文献   

19.
Numerous strategies have been managed to improve functional recovery after spinal cord injury (SCI) but an optimal strategy doesn't exist yet. Actually, it is the complexity of the injured spinal cord pathophysiology that begets the multifactorial approaches assessed to favour tissue protection, axonal regrowth and functional recovery. In this context, it appears that mesenchymal stem cells (MSCs) could take an interesting part. The aim of this study is to graft MSCs after a spinal cord compression injury in adult rat to assess their effect on functional recovery and to highlight their mechanisms of action. We found that in intravenously grafted animals, MSCs induce, as early as 1 week after the graft, an improvement of their open field and grid navigation scores compared to control animals. At the histological analysis of their dissected spinal cord, no MSCs were found within the host despite their BrdU labelling performed before the graft, whatever the delay observed: 7, 14 or 21 days. However, a cytokine array performed on spinal cord extracts 3 days after MSC graft reveals a significant increase of NGF expression in the injured tissue. Also, a significant tissue sparing effect of MSC graft was observed. Finally, we also show that MSCs promote vascularisation, as the density of blood vessels within the lesioned area was higher in grafted rats. In conclusion, we bring here some new evidences that MSCs most likely act throughout their secretions and not via their own integration/differentiation within the host tissue.  相似文献   

20.
We compared the survival of cultured epithelial allografts and epithelial autografts applied to donor sites for split-thickness skin grafts. Before grafting, cultured epithelium was devoid of Langerhans cells (LCs) or lymphoid cells by immunohistochemical and electron microscopic examinations. The autografts attached to the wounds permanently, without any clinical evidence of rejection. In contrast, allografts, which were mismatched for MHC and blood-type antigens, appeared to adhere firmly only until day 7. By the second week, signs of graft rejection were apparent: The graft changed color, and the underlying dermis underwent "microerosion" and denudation. By the third week, the area formerly occupied by the allograft had the same coloration as ungrafted wounds and apparently had undergone reepithelialization by the host. Immunohistochemical and ultrastructural studies clearly demonstrated that host Langerhans-like cells (without Birbeck granules) appeared in both autografts and allografts. However, these cells were numerous and distributed widely throughout allografts, whereas they were scarce and confined to the basal layer of autografts. Typical Langerhans cells (containing Birbeck granules) were present in the prickle-cell layer of autografts by day 7. The present study strongly indicates that allografts of cultured epithelium are rejected. Furthermore, given the known ability of Langerhans-like cells to function as accessory cells in T-cell activation, our results point to a role for host Langerhans-like cells in immunologically mediated rejection of the epithelial allografts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号