首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Vitamin A (retinol) and provitamin A (beta-carotene) are metabolized to specific retinoid derivatives which function in either vision or growth and development. The metabolite 11-cis-retinal functions in light absorption for vision in chordate and nonchordate animals, whereas all-trans-retinoic acid and 9-cis-retinoic acid function as ligands for nuclear retinoic acid receptors that regulate gene expression only in chordate animals. Investigation of retinoid metabolic pathways has resulted in the identification of numerous retinoid dehydrogenases that potentially contribute to metabolism of various retinoid isomers to produce active forms. These enzymes fall into three major families. Dehydrogenases catalyzing the reversible oxidation/reduction of retinol and retinal are members of either the alcohol dehydrogenase (ADH) or short-chain dehydrogenase/reductase (SDR) enzyme families, whereas dehydrogenases catalyzing the oxidation of retinal to retinoic acid are members of the aldehyde dehydrogenase (ALDH) family. Compilation of the known retinoid dehydrogenases indicates the existence of 17 nonorthologous forms: five ADHs, eight SDRs, and four ALDHs, eight of which are conserved in both mouse and human. Genetic studies indicate in vivo roles for two ADHs (ADH1 and ADH4), one SDR (RDH5), and two ALDHs (ALDH1 and RALDH2) all of which are conserved between humans and rodents. For several SDRs (RoDH1, RoDH4, CRAD1, and CRAD2) androgens rather than retinoids are the predominant substrates suggesting a function in androgen metabolism as well as retinoid metabolism.  相似文献   

2.
3.
Metabolic activation of retinol (vitamin A) via sequential actions of retinol and retinal dehydrogenases produces the active metabolite all-trans-retinoic acid. This work reports cDNA cloning, enzymatic characterization, function in a reconstituted path of all-trans-retinoic acid biosynthesis in cell culture, and mRNA expression patterns in adult tissues and embryos of a mouse retinol dehydrogenase, RDH1. RDH1 represents a new member of the short chain dehydrogenase/reductase superfamily that differs from other mouse RDH in relative activity with all-trans and cis-retinols. RDH1 has a multifunctional catalytic nature, as do other short chain dehydrogenase/reductases. In addition to retinol dehydrogenase activity, RDH1 has strong 3alpha-hydroxy and weak 17beta-hydroxy steroid dehydrogenase activities. RDH1 has widespread and intense mRNA expression in tissues of embryonic and adult mice. The mouse embryo expresses RDH1 as early as 7.0 days post-coitus, and expression is especially intense within the neural tube, gut, and neural crest at embryo day 10.5. Cells cotransfected with RDH1 and any one of three retinal dehydrogenase isozymes synthesize all-trans-retinoic acid from retinol, demonstrating that RDH1contributes to a path of all-trans-retinoic acid biosynthesis in intact cells. These characteristics are consistent with RDH1 functioning in a path of all-trans-retinoic acid biosynthesis starting early during embryogenesis.  相似文献   

4.
Vitamin A and its analogs (retinoids) regulate adipocyte differentiation. Recent investigations have demonstrated a relationship among retinoids, retinoid-binding-protein 4 (RBP4) synthesized in adipose tissues, and insulin-resistance status. In this study, we measured retinoid levels and analyzed the expression of retinoid homeostatic genes associated with retinol uptake, esterification, oxidation, and catabolism in subcutaneous (Sc) and visceral (Vis) mouse fat tissues. Both Sc and Vis depots were found to contain similar levels of all-trans retinol. A metabolite of retinol with characteristic ultraviolet absorption maxima for 9-cis retinol was observed in these 2 adipose depots, and its level was 2-fold higher in Sc than in Vis tissues. Vis adipose tissue expressed significantly higher levels of RBP4, CRBP1 (intracellular retinol-binding protein 1), RDH10 (retinol dehydrogenase), as well as CYP26A1 and B1 (retinoic acid (RA) hydroxylases). No differences in STRA6 (RBP4 receptor), LRAT (retinol esterification), CRABP1 and 2 (intracellular RA-binding proteins), and RALDH1 (retinal dehydrogenase) mRNA expressions were discerned in both fat depots. RALDH1 was identified as the only RALDH expressed in both Sc and Vis adipose tissues. These results indicate that Vis is more actively involved in retinoid metabolism than Sc adipose tissue.  相似文献   

5.
Retinoids have many functions in the eye, including, perhaps, the visual guidance of ocular growth. Therefore, we identified where retinoid receptors, binding proteins, and biosynthetic enzymes are located in the ocular tissues of the chick as a step toward discovering where retinoids are generated and where they act. Using antibodies to interphotoreceptor retinoid binding protein (IRBP), cellular retinol binding protein (CRBP), cellular retinoic acid binding protein (CRABP), cellular retinaldehyde binding protein (CRALBP), retinaldehyde dehydrogenase (RALDH), and retinoic acid receptors (RAR and RXR), we localized these proteins to cells in the retina, retinal pigmented epithelium, choroid and sclera of the chick eye. IRBP was detected in the photoreceptor layer and pigmented epithelium; CRBP was in the pigmented epithelium; CRABP was in amacrine and bipolar cells in the retina; CRALBP was in Müller cells, pigmented epithelium, choroid, and fibrous sclera; RALDH was in retinal amacrine cells, pigmented epithelium, and choroid; RAR was in amacrine cells, choroid, and chondrocytes and fibroblasts in the sclera; and RXR was in amacrine and ganglion cells, bipolar cell nuclei, choroid, and chondrocytes. We also found that the growth-modulating toxins colchicine and quisqualate destroyed selectively different subsets of CRABP-containing amacrine cells. We conclude that the distribution of proteins involved in retinoid metabolism is consistent with a role of retinoids not only in phototransduction, but also in maintenance of cellular phenotype and visual guidance of ocular growth.  相似文献   

6.
Retinoic acid biosynthesis in vertebrates occurs in two consecutive steps: the oxidation of retinol to retinaldehyde followed by the oxidation of retinaldehyde to retinoic acid. Enzymes of the MDR (medium-chain dehydrogenase/reductase), SDR (short-chain dehydrogenase/reductase) and AKR (aldo-keto reductase) superfamilies have been reported to catalyse the conversion between retinol and retinaldehyde. Estimation of the relative contribution of enzymes of each type was difficult since kinetics were performed with different methodologies, but SDRs would supposedly play a major role because of their low K(m) values, and because they were found to be active with retinol bound to CRBPI (cellular retinol binding protein type I). In the present study we employed detergent-free assays and HPLC-based methodology to characterize side-by-side the retinoid-converting activities of human MDR [ADH (alcohol dehydrogenase) 1B2 and ADH4), SDR (RoDH (retinol dehydrogenase)-4 and RDH11] and AKR (AKR1B1 and AKR1B10) enzymes. Our results demonstrate that none of the enzymes, including the SDR members, are active with CRBPI-bound retinoids, which questions the previously suggested role of CRBPI as a retinol supplier in the retinoic acid synthesis pathway. The members of all three superfamilies exhibit similar and low K(m) values for retinoids (0.12-1.1 microM), whilst they strongly differ in their kcat values, which range from 0.35 min(-1) for AKR1B1 to 302 min(-1) for ADH4. ADHs appear to be more effective retinol dehydrogenases than SDRs because of their higher kcat values, whereas RDH11 and AKR1B10 are efficient retinaldehyde reductases. Cell culture studies support a role for RoDH-4 as a retinol dehydrogenase and for AKR1B1 as a retinaldehyde reductase in vivo.  相似文献   

7.
Free retinoids suffer promiscuous metabolism in vitro. Diverse enzymes are expressed in several subcellular fractions that are capable of converting free retinol (retinol not sequestered with specific binding proteins) into retinal or retinoic acid. If this were to occur in vivo, regulating the temporal-spatial concentrations of functionally-active retinoids, such as RA (retinoic acid), would be enigmatic. In vivo, however, retinoids occur bound to high-affinity, high-specificity binding proteins, including cellular retinol-binding protein, type I (CRBP) and cellular retinoic acid-binding protein, type I (CRABP). These binding proteins, members of the superfamily of lipid binding proteins, are expressed in concentrations that exceed those of their ligands. Considerable data favor a model pathway of RA biosynthesis and metabolism consisting of enzymes that recognize CRBP (apo and holo) and holo-CRABP as substrates and/or affecters of activity. This would restrict retinoid access to enzymes that recognize the appropriate binding protein, imparting specificity to RA homeostasis; preventing, e.g. opportunistic RA synthesis by alcohol dehydrogenases with broad substrate tolerances. An NADP-dependent microsomal retinol dehydrogenase (RDH) catalyzes the first reaction in this pathway. RDH recognizes CRBP as substrate by the dual criteria of enzyme kinetics and chemical crosslinking. A cDNA of RDH has been cloned, expressed and characterized as a short-chain alchol dehydrogenase. Retinal generated in microsomes from holo-CRBP by RDH supports cytosolic RA synthesis by an NAD-dependent retinal dehydrogenase (RalDH). RalDH has been purified, characterized with respect to substrate specificity, and its cDNA has been cloned. CRABP is also important to modulating the steady-state concentrations of RA, through sequestering RA and facilitating its metabolism, because the complex CRABP/RA acts as a low Km substrate.  相似文献   

8.
9.
Characterization of retinoid metabolism in the developing chick limb bud   总被引:8,自引:0,他引:8  
Retinoids (vitamin A derivatives) have been shown to have striking effects on developing and regenerating vertebrate limbs. In the developing chick limb, retinoic acid is a candidate morphogen that may coordinate the pattern of cellular differentiation along the anteroposterior limb axis. We describe a series of investigations of the metabolic pathway of retinoids in the chick limb bud system. To study retinoid metabolism in the bud, all-trans-[3H]retinol, all-trans-[3H]retinal and all-trans-[3H]retinoic acid were released into the posterior region of the limb anlage, the area that contains the zone of polarizing activity, a tissue possibly involved in limb pattern formation. We found that the locally applied [3H]retinol is primarily converted to [3H]retinal, [3H]retinoic acid and a yet unidentified metabolite. When [3H]retinal is locally applied, it is either oxidized to [3H]retinoic acid or reduced to [3H]retinol. In contrast, local delivery of retinoic acid to the bud yields neither retinal nor retinol nor the unknown metabolite. This flow of metabolites agrees with the biochemical pathway of retinoids that has previously been elucidated in a number of other animal systems. To find out whether metabolism takes place directly in the treated limb bud, we have compared the amount of [3H]retinoid present in each of the four limb anlagen following local treatment of the right wing bud. The data suggest that retinoid metabolism takes place mostly in the treated limb bud. This local metabolism could provide a simple mechanism to generate in a controlled fashion the biologically active all-trans-retinoic acid from its abundant biosynthetic precursor retinol. In addition, local metabolism supports the hypothesis that retinoids are local chemical mediators involved in pattern formation.  相似文献   

10.
Human retinol dehydrogenase 10 (RDH10) was implicated in the oxidation of all-trans-retinol for biosynthesis of all-trans-retinoic acid, however, initial assays suggested that RDH10 prefers NADP(+) as a cofactor, undermining its role as an oxidative enzyme. Here, we present evidence that RDH10 is, in fact, a strictly NAD(+)-dependent enzyme with multisubstrate specificity that recognizes cis-retinols as well as all-trans-retinol as substrates. RDH10 has a relatively high apparent K(m) value for NAD(+) (~100 microm) but the lowest apparent K(m) value for all-trans-retinol (~0.035 microm) among all NAD(+)-dependent retinoid oxidoreductases. Due to its high affinity for all-trans-retinol, RDH10 exhibits a greater rate of retinol oxidation in the presence of cellular retinol-binding protein type I (CRBPI) than human microsomal RoDH4, but like RoDH4, RDH10 does not recognize retinol bound to CRBPI as a substrate. Consistent with its preference for NAD(+), RDH10 functions exclusively in the oxidative direction in the cells, increasing the levels of retinaldehyde and retinoic acid. Targeted small interfering RNA-mediated silencing of endogenous RDH10 or RoDH4 expression in human cells results in a significant decrease in retinoic acid production from retinol, identifying both human enzymes as physiologically relevant retinol dehydrogenases. The dual cis/trans substrate specificity suggests a dual physiological role for RDH10: in the biosynthesis of 11-cis-retinaldehyde for vision as well as the biosynthesis of all-trans-retinoic acid for differentiation and development.  相似文献   

11.
Studies in knockout mice support the involvement of alcohol dehydrogenases ADH1 and ADH4 in retinoid metabolism, although kinetics with retinoids are not known for the mouse enzymes. Moreover, a role of alcohol dehydrogenase (ADH) in the eye retinoid interconversions cannot be ascertained due to the lack of information on the kinetics with 11-cis-retinoids. We report here the kinetics of human ADH1B1, ADH1B2, ADH4, and mouse ADH1 and ADH4 with all-trans-, 7-cis-, 9-cis-, 11-cis- and 13-cis-isomers of retinol and retinal. These retinoids are substrates for all enzymes tested, except the 13-cis isomers which are not used by ADH1. In general, human and mouse ADH4 exhibit similar activity, higher than that of ADH1, while mouse ADH1 is more efficient than the homologous human enzymes. All tested ADHs use 11-cis-retinoids efficiently. ADH4 shows much higher k(cat)/K(m) values for 11-cis-retinol oxidation than for 11-cis-retinal reduction, a unique property among mammalian ADHs for any alcohol/aldehyde substrate pair. Docking simulations and the kinetic properties of the human ADH4 M141L mutant demonstrated that residue 141, in the middle region of the active site, is essential for such ADH4 specificity. The distinct kinetics of ADH4 with 11-cis-retinol, its wide specificity with retinol isomers and its immunolocalization in several retinal cell layers, including pigment epithelium, support a role of this enzyme in the various retinol oxidations that occur in the retina. Cytosolic ADH4 activity may complement the isomer-specific microsomal enzymes involved in photopigment regeneration and retinoic acid synthesis.  相似文献   

12.
Biochemical studies indicate that alcohol dehydrogenase (ADH) metabolizes retinol to retinal, and that aldehyde dehydrogenase (ALDH) metabolizes retinal to retinoic acid, a molecule essential for growth and development. Summarized herein are several genetic studies supporting in vivo functions for ADH and ALDH in retinoic acid synthesis. Gene targeting was used to create knockout mice for either Adh1 or Adh4. Both knockout mice were viable and fertile without obvious defects. However, when wild-type and Adh4 knockout mice were subjected to vitamin A deficiency during gestation, the survival rate at birth was 3.3-fold lower for Adh4 knockout mice. When adult mice were examined for production of retinoic acid following retinol administration, Adh1 knockout mice exhibited 10-fold lower retinoic acid levels in liver compared with wild-type, whereas Adh4 knockout mice differed from wild-type by less than 2-fold. Thus, Adh1 plays a major role in the metabolism of a large dose of retinol to retinoic acid in adults, whereas Adh4 plays a role in maintaining sufficient retinol metabolism for development during retinol deficiency. ALDHs were examined by overexpression studies in frog embryos. Injection of mRNAs for either mouse Raldh1 or Raldh2 stimulated retinoic acid synthesis in frog embryos at the blastula stage when retinoic acid is normally undetectable. Overexpression of human ALDH2, human ALDH3, and mouse Aldh-pb did not stimulate retinoic acid production. In addition, Raldh2 knockout mice exhibit embryonic lethality with defects in retinoid-dependent tissues. Overall, these studies provide genetic evidence that Adh1, Adh4, Raldh1, and Raldh2 encode retinoid dehydrogenases involved in retinoic acid synthesis in vivo.  相似文献   

13.
Mutations in human Retinol Dehydrogenase 12 (RDH12) are known to cause photoreceptor cell death but the physiological function of RDH12 in photoreceptors remains poorly understood. In vitro, RDH12 recognizes both retinoids and medium-chain aldehydes as substrates. Our previous study suggested that RDH12 protects cells against toxic levels of retinaldehyde and retinoic acid [S.A. Lee, O.V. Belyaeva, I.K. Popov, N.Y. Kedishvili, Overproduction of bioactive retinoic acid in cells expressing disease-associated mutants of retinol dehydrogenase 12, J. Biol. Chem. 282 (2007) 35621-35628]. Here, we investigated whether RDH12 can also protect cells against highly reactive medium-chain aldehydes. Analysis of cell survival demonstrated that RDH12 was protective against nonanal but not against 4-hydroxynonenal. At high concentrations, nonanal inhibited the activity of RDH12 towards retinaldehyde, suggesting that nonanal was metabolized by RDH12. 4-Hydroxynonenal did not inhibit the RDH12 retinaldehyde reductase activity, but it strongly inhibited the activities of lecithin:retinol acyl transferase and aldehyde dehydrogenase, resulting in decreased levels of retinyl esters and retinoic acid and accumulation of unesterified retinol. Thus, the results of this study showed that RDH12 is more effective in protection against retinaldehyde than against medium-chain aldehydes, and that medium-chain aldehydes, especially 4-hydroxynonenal, severely disrupt cellular retinoid homeostasis. Together, these findings provide a new insight into the effects of lipid peroxidation products and the impact of oxidative stress on retinoid metabolism.  相似文献   

14.
Analysis of mouse retinal dehydrogenase type 2 promoter and expression   总被引:1,自引:0,他引:1  
Wang X  Sperkova Z  Napoli JL 《Genomics》2001,74(2):245-250
  相似文献   

15.
The ability of class I alcohol dehydrogenase (ADH1) and class IV alcohol dehydrogenase (ADH4) to metabolize retinol to retinoic acid is supported by genetic studies in mice carrying Adh1 or Adh4 gene disruptions. To differentiate the physiological roles of ADH1 and ADH4 in retinoid metabolism we report here the generation of an Adh1/4 double null mutant mouse and its comparison to single null mutants. We demonstrate that loss of both ADH1 and ADH4 does not have additive effects, either for production of retinoic acid needed for development or for retinol turnover to minimize toxicity. During gestational vitamin A deficiency Adh4 and Adh1/4 mutants exhibit completely penetrant postnatal lethality by day 15 and day 24, respectively, while 60% of Adh1 mutants survive to adulthood similar to wild-type. Following administration of a 50-mg/kg dose of retinol to examine retinol turnover, Adh1 and Adh1/4 mutants exhibit similar 10-fold decreases in retinoic acid production, whereas Adh4 mutants have only a slight decrease. LD(50) studies indicate a large increase in acute retinol toxicity for Adh1 mutants, a small increase for Adh4 mutants, and an intermediate increase for Adh1/4 mutants. Chronic retinol supplementation during gestation resulted in 65% postnatal lethality in Adh1 mutants, whereas only approximately 5% for Adh1/4 and Adh4 mutants. These studies indicate that ADH1 provides considerable protection against vitamin A toxicity, whereas ADH4 promotes survival during vitamin A deficiency, thus demonstrating largely non-overlapping functions for these enzymes in retinoid metabolism.  相似文献   

16.
Retinoids are important signalling molecules in the development of limbs and in the determination of the anterior-posterior orientation of the embryo. The present study examined the content and distribution of retinoic acid, retinol and retinyl esters in porcine embryos during early gestation (gestation days 22-30) macroscopically and microscopically by its autofluorescence and by HPLC. Macroscopically, the yellowish-greenish autofluorescence characteristic of vitamin A was observed in tissues affected by morphogenesis, such as the limbs, in a spatial and temporal manner. Changes in the intensity of autofluorescence in the limbs paralleled changes in the concentration of retinoids in these structures. In the limbs and the body, retinol, retinyl palmitate, and all-trans-retinoic acid but neither the isomers of all-trans retinoic acid nor other retinoid metabolites were detected. In addition, the distribution of specific retinoid-binding proteins was investigated; these are involved in vitamin A transport, metabolism and signal transduction. Immunoreactive retinol-binding protein as well as cellular retinoic acid binding protein type I were only localised in the mesonephros, while the retinoid X receptor beta was widely distributed in most of the tissues and organs of the embryo throughout the time period investigated. The combination of autofluorescence and HPLC analysis allowed for the first time to attribute the yellowish-greenish autofluorescence in specific regions of the embryo to vitamin A, and offers a method to study the local cellular distribution of retinol and/or retinyl esters as well as their concentrations in embryonic tissues.  相似文献   

17.
In order for nuclear retinoic acid receptors to mediate retinoid signaling, the ligand retinoic acid must first be produced from its vitamin A precursor retinal. Biochemical studies have shown that retinal can be metabolized in vitro to retinoic acid by members of the aldehyde dehydrogenase enzyme family, including ALDH1. Here we describe the first direct evidence that ALDH1 plays a physiological role in retinoic acid synthesis by analysis of retinoid signaling in Xenopus embryos, which have plentiful stores of maternally derived retinal. The Xenopus ALDH1 gene was cloned and shown to be highly conserved with chick and mammalian homologs. Xenopus ALDH1 was not expressed at blastula and gastrula stages, but was expressed at the neurula stage. We used a retinoic acid bioassay to demonstrate that retinoic acid is normally undetectable in embryos from fertilization to the initial gastrula stage, but that a tremendous increase in retinoic acid occurs during neurulation when ALDH1 is first expressed. Overexpression of ALDH1 by injection of Xenopus embryos with mRNAs encoding the mouse, chick or Xenopus ALDH1 homologs induced high levels of retinoic acid detection during the blastula stage. Thus, premature expression of ALDH1 stimulates premature synthesis of retinoic acid. These findings reveal an important conserved role for ALDH1 in retinoic acid synthesis in vivo, and demonstrate that conversion of retinoids from the aldehyde form to the carboxylic acid form is a crucial regulatory step in retinoid signaling.  相似文献   

18.
Many tissues and cell types, starting early in embryogenesis, convert retinol (vitamin A) into an active form, all-trans-retinoic acid. This article will discuss a current model of retinol and retinoic acid metabolism that integrates the various reactions which maintain retinoic acid homeostasis, and will also integrate the enzymology with the functions of cellular retinoid binding proteins. These conserved, high-affinity binding proteins enjoy widespread expression throughout all vertebrates and throughout most vertebrate tissues. The binding proteins limit access to retinol and retinoic acid to select enzymes and serve as substrates and affecters of retinoid metabolism.  相似文献   

19.
Some members of the human alcohol dehydrogenase (ADH) family possess retinol dehydrogenase activity and may thus function in production of the active nuclear receptor ligand retinoic acid. Many diverse natural forms of retinol exist including all-trans-retinol (vitamin A(1)), 9-cis-retinol, 3,4-didehydroretinol (vitamin A(2)), 4-oxo-retinol, and 4-hydroxy-retinol as well as their respective carboxylic acid derivatives which are active ligands for retinoid receptors. This raises the question of whether ADHs can accommodate all these different retinols and thus participate in the activation of several retinoid ligands. The crystal structures of human ADH1B and ADH4 provide the opportunity to examine their active sites for potential binding to many diverse retinol structures using molecular docking algorithms. The criteria used to score successful docking included achievement of distances of 1.9-2.4 A between the catalytic zinc and the hydroxyl oxygen of retinol and 3.2-3.6 A between C-4 of the coenzyme NAD and C-15 of retinol. These distances are sufficient to enable hydride transfer during the oxidation of an alcohol to an aldehyde. By these criteria, all-trans-retinol, 4-oxo-retinol, and 4-hydroxy-retinol were successfully docked to both ADH1B and ADH4. However, 9-cis-retinol and 3,4-didehydroretinol, which have more restrictive conformations, were successfully docked to only ADH4 which possesses a wider active site than ADH1B and more easily accommodates the C-19 methyl group. Furthermore, docking of all retinols was more favorable in the active site of ADH4 rather than ADH1B as measured by force field and contact scores. These findings suggest that ADH1B has a limited capacity to metabolize retinols, but that ADH4 is well suited to function in the metabolism of many diverse retinols and is predicted to participate in the synthesis of the active ligands all-trans-retinoic acid, 9-cis-retinoic acid, 3, 4-didehydroretinoic acid, 4-oxo-retinoic acid, and 4-hydroxy-retinoic acid.  相似文献   

20.
All-trans-retinoic acid (atRA) provides essential support to diverse biological systems and physiological processes. Epithelial differentiation and its relationship to cancer, and embryogenesis have typified intense areas of interest into atRA function. Recently, however, interest in atRA action in the nervous system, the immune system, energy balance and obesity has increased considerably, especially concerning postnatal function. atRA action depends on atRA biosynthesis: defects in retinoid-dependent processes increasingly relate to defects in atRA biogenesis. Considerable evidence indicates that physiological atRA biosynthesis occurs via a regulated process, consisting of a complex interaction of retinoid binding-proteins and retinoid recognizing enzymes. An accrual of biochemical, physiological and genetic data have identified specific functional outcomes for the retinol dehydrogenases, RDH1, RDH10, and DHRS9, as physiological catalysts of the first step in atRA biosynthesis, and for the retinal dehydrogenases RALDH1, RALDH2, and RALDH3, as catalysts of the second and irreversible step. Each of these enzymes associates with explicit biological processes mediated by atRA. Redundancy occurs, but seems limited. Cumulative data support a model of interactions among these enzymes with retinoid binding-proteins, with feedback regulation and/or control by atRA via modulating gene expression of multiple participants. The ratio apo-CRBP1/holo-CRBP1 participates by influencing retinol flux into and out of storage as retinyl esters, thereby modulating substrate to support atRA biosynthesis. atRA biosynthesis requires the presence of both an RDH and an RALDH: conversely, absence of one isozyme of either step does not indicate lack of atRA biosynthesis at the site. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号