首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epstein-Barr virus (EBV) replicates in its latent phase once per cell cycle in proliferating B cells. The latent origin of DNA replication, oriP, supports replication and stable maintenance of the EBV genome. OriP comprises two essential elements: the dyad symmetry (DS) and the family of repeats (FR), both containing clusters of binding sites for the transactivator EBNA1. The DS element appears to be the functional replicator. It is not yet understood how oriP-dependent replication is integrated into the cell cycle and how EBNA1 acts at the molecular level. Using chromatin immunoprecipitation experiments, we show that the human origin recognition complex (hsORC) binds at or near the DS element. The association of hsORC with oriP depends on the DS element. Deletion of this element not only abolishes hsORC binding but also reduces replication initiation at oriP to background level. Co-immunoprecipitation experiments indicate that EBNA1 is associated with hsORC in vivo. These results indicate that oriP might use the same cellular initiation factors that regulate chromosomal replication, and that EBNA1 may be involved in recruiting hsORC to oriP.  相似文献   

2.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

3.
D J Hsieh  S M Camiolo    J L Yates 《The EMBO journal》1993,12(13):4933-4944
Replication of the circular, 170 kb genome of Epstein-Barr virus (EBV) during latent infection is performed by the cellular replication machinery under cell-cycle control. A single viral protein, EBNA1, directs the cellular replication apparatus to initiate replication within the genetically defined replication origin, oriP, at a cluster of four EBNA1 binding sites, referred to here as the physical origin of bidirectional replication, or OBR. A second cluster of EBNA1 binding sites within oriP, the 30 bp repeats, serves an essential role as a replication enhancer and also provides a distinct episome maintenance function that is unrelated to replication. We examined the functional elements of oriP for binding by EBNA1 and possibly other proteins in proliferating Raji cells by generating in vivo footprints using two reagents, dimethylsulfate (DMS) and KMnO4. We also employed deoxyribonuclease I (DNase I) with permeabilized cells. The in vivo and permeabilized cell footprints at the EBNA1 binding sites, particularly those obtained using DMS, gave strong evidence that all of these sites are bound by EBNA1 in asynchronously dividing cells. No consistent evidence was found to suggest binding by other proteins at any other sites within the functional regions of oriP. Thymines at symmetrical positions of the OBR within oriP were oxidized when cells were treated with permanganate, suggestive of bends or other distortions of DNA structure at these positions; binding of EBNA1 in vitro to total DNA from Raji cells induced reactivity to permanganate at identical positions. The simplest interpretation of the results, which were obtained using asynchronously dividing cells, is that EBNA1 binds to its sites at oriP and holds the OBR in a distorted conformation throughout most of the cell cycle, implying that replication is initiated by a cellular mechanism and is not limited by an availability of EBNA1 for binding to oriP.  相似文献   

4.
The replication and stable maintenance of latent Epstein-Barr virus (EBV) DNA episomes in human cells requires only one viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). To gain insight into the mechanisms by which EBNA1 functions, we used a yeast two-hybrid screen to detect human proteins that interact with EBNA1. We describe here the isolation of a protein, EBP2 (EBNA1 binding protein 2), that specifically interacts with EBNA1. EBP2 was also shown to bind to DNA-bound EBNA1 in a one-hybrid system, and the EBP2-EBNA1 interaction was confirmed by coimmunoprecipitation from insect cells expressing these two proteins. EBP2 is a 35-kDa protein that is conserved in a variety of organisms and is predicted to form coiled-coil interactions. We have mapped the region of EBNA1 that binds EBP2 and generated internal deletion mutants of EBNA1 that are deficient in EBP2 interactions. Functional analyses of these EBNA1 mutants show that the ability to bind EBP2 correlates with the ability of EBNA1 to support the long-term maintenance in human cells of a plasmid containing the EBV origin, oriP. An EBNA1 mutant lacking amino acids 325 to 376 was defective for EBP2 binding and long-term oriP plasmid maintenance but supported the transient replication of oriP plasmids at wild-type levels. Thus, our results suggest that the EBNA1-EBP2 interaction is important for the stable segregation of EBV episomes during cell division but not for the replication of the episomes.  相似文献   

5.
Some possible ways in which replication of plasmids containing the Epstein-Barr virus (EBV) plasmid maintenance origin, oriP, might be controlled were investigated. Virtually all plasmid molecules were found to replicate no more than once per cell cycle, whether replication was observed after stable introduction of the plasmids into cells by drug selection or during the first few cell divisions after introducing the DNA into cells. The presence in the cells of excess amounts of EBNA1, the only viral protein needed for oriP function, did not increase the number of oriP-replicated plasmids maintained by cells under selection. In the cell lines studied, EBNA1 and oriP seem to lack the capacity to override the cellular controls that limit DNA replication to one initiation event per DNA molecule per S phase. The multicopy status of EBV-derived, selectable plasmids appears to result from the initial uptake by cells of large numbers of plasmid molecules, the efficient maintenance of these plasmids, and the pressure of genetic selection against plasmid loss. Other unknown controls must be responsible for the amplification of EBV genomes soon after latent infection of cells.  相似文献   

6.
A Aiyar  C Tyree    B Sugden 《The EMBO journal》1998,17(21):6394-6403
Plasmids containing oriP, the plasmid origin of Epstein-Barr virus (EBV), are replicated stably in human cells that express a single viral trans-acting factor, EBNA-1. Unlike plasmids of other viruses, but akin to human chromosomes, oriP plasmids are synthesized once per cell cycle, and are partitioned faithfully to daughter cells during mitosis. Although EBNA-1 binds multiple sites within oriP, its role in DNA synthesis and partitioning has been obscure. EBNA-1 lacks enzymatic activities that are present in the origin-binding proteins of other mammalian viruses, and does not interact with human cellular proteins that provide equivalent enzymatic functions. We demonstrate that plasmids with oriP or its constituent elements are synthesized efficiently in human cells in the absence of EBNA-1. Further, we show that human cells rapidly eliminate or destroy newly synthesized plasmids, and that both EBNA-1 and the family of repeats of oriP are required for oriP plasmids to escape this catastrophic loss. These findings indicate that EBV's plasmid replicon consists of genetic elements with distinct functions, multiple cis-acting elements that facilitate DNA synthesis and viral cis/trans elements that permit retention of replicated DNA in daughter cells. They also explain historical failures to identify mammalian origins of DNA synthesis as autonomously replicating sequences.  相似文献   

7.
The Epstein-Barr virus (EBV) latent origin of plasmid replication (oriP) contains two essential regions, a family of repeats with 20 imperfect copies of a 30-bp sequence and a dyad symmetry element with four similar 30-bp repeats. Each of the repeats has an internal palindromic sequence and can bind EBNA 1, a protein that together with oriP constitutes the only viral element necessary for EBV maintenance and replication. Using single-strand-specific nucleases, we have probed plasmids containing oriP-derived sequences for the presence of secondary structural elements. Multiple single-stranded structures were detected within the oriP region. Of the two essential elements of oriP, the family of repeats seemed to extrude these structures at a much higher frequency than did sequences within the dyad symmetry region. Though negative supercoiling was found to stabilize the single-stranded structures, they showed significant stability even after linearization of the oriP plasmids. Two major single-stranded structures detected involved approximately 12 bp of DNA. These loci could be transiently unwound regions that form because of negative supercoiling and the high A + T content of this region of DNA, or they could be cruciform structures extruded within the palindromic sequences of oriP that may be important sites for protein-DNA interactions in the EBV oriP.  相似文献   

8.
Lindner SE  Sugden B 《Plasmid》2007,58(1):1-12
The genome of Epstein-Barr Virus (EBV) and plasmid derivatives of it are among the most efficient extrachromosomal replicons in mammalian cells. The latent origin of plasmid replication (oriP), when supplied with the viral Epstein-Barr Nuclear Antigen 1 (EBNA1) in trans, provides efficient duplication, partitioning and maintenance of plasmids bearing it. In this review, we detail what is known about the viral cis and trans elements required for plasmid replication. In addition, we describe how the cellular factors that EBV usurps are used to complement the functions of the viral constituents. Finally, we propose a model for the sequential assembly of an EBNA1-dependent origin of DNA synthesis into a pre-Replicative Complex (pre-RC), which functions by making use only of cellular enzymatic activities to carry out the replication of the viral plasmid.  相似文献   

9.
The EBNA1 protein of Epstein-Barr virus (EBV) activates DNA replication by binding to multiple copies of its 18-bp recognition sequence present in the Epstein-Barr virus latent origin of DNA replication, oriP. Using electrophoretic mobility shift assays, we have localized the minimal DNA binding domain of EBNA1 to between amino acids 470 and 607. We have also demonstrated that EBNA1 assembles cooperatively on the dyad symmetry subelement of oriP and that this cooperative interaction is mediated by residues within the minimal DNA binding and dimerization domain of EBNA1.  相似文献   

10.
During latency, Epstein-Barr virus (EBV) is stably maintained as a circular plasmid that is replicated once per cell cycle and partitioned at mitosis. Both these processes require a single viral protein, EBV nuclear antigen 1 (EBNA1), which binds two clusters of cognate binding sites within the latent viral origin, oriP. EBNA1 is known to associate with cellular metaphase chromosomes through chromosome-binding domains within its amino terminus, an association that we have determined to be required not only for the partitioning of oriP plasmids but also for their replication. One of the chromosome-binding domains of EBNA1 associates with a cellular nucleolar protein, EBP2, and it has been proposed that this interaction underlies that ability of EBNA1 to bind metaphase chromosomes. Here we demonstrate that EBNA1's chromosome-binding domains are AT hooks, a DNA-binding motif found in a family of proteins that bind the scaffold-associated regions on metaphase chromosomes. Further, we demonstrate that the ability of EBNA1 to stably replicate and partition oriP plasmids correlates with its AT hook activity and not its association with EBP2. Finally, we examine the contributions of EBP2 toward the ability of EBNA1 to associate with metaphase chromosomes in human cells, as well as support the replication and partitioning of oriP plasmids in human cells. Our results indicate that it is unlikely that EBP2 directly mediates these activities of EBNA1 in human cells.  相似文献   

11.
A hypomorphic mutation made in the ORC2 gene of a human cancer cell line through homologous recombination decreased Orc2 protein levels by 90%. The G1 phase of the cell cycle was prolonged, but there was no effect on the utilization of either the c-Myc or beta-globin cellular origins of replication. Cells carrying this mutation failed to support the replication of a plasmid bearing the oriP replicator of Epstein Barr virus (EBV), and this defect was rescued by reintroduction of Orc2. Orc2 specifically associates with oriP in cells, most likely through its interaction with EBNA1. Geminin, an inhibitor of the mammalian replication initiation complex, inhibits replication from oriP. Therefore, ORC and the human replication initiation apparatus is required for replication from a viral origin of replication.  相似文献   

12.
Replication of the Epstein-Barr virus genome initiates at one of several sites in latently infected, dividing cells. One of these replication origins is close to the viral DNA maintenance element, and, together, this replication origin and the maintenance element are referred to as oriP. The replicator of oriP contains four binding sites for Epstein-Barr virus nuclear antigen 1 (EBNA-1), the sole viral protein required for the replication and maintenance of oriP plasmids. We showed previously that these EBNA-1 sites function in pairs and that mutational inactivation of one pair does not eliminate replicator function. In this study we characterized the contribution of each EBNA-1 site within the replicator and flanking sequences through the use of an internally controlled replication assay. We present evidence that shows that all four EBNA-1 sites are required for an oriP plasmid to be replicated in every cell cycle. Results from these experiments also show that the paired EBNA-1 binding sites are not functionally equivalent and that the low affinity of sites 2 and 3 compared to that of sites 1 and 4 is not essential for replicator function. Our results suggest that a host cell protein(s) binds sequences flanking the EBNA-1 sites and that interactions between EBNA-1 and this protein(s) are critical for replicator function. Finally, we present evidence that shows that the minimal replicator of oriP consists of EBNA-1 sites 3 and 4 and two copies of a 14-bp repeat that is present in inverse orientation flanking these EBNA-1 sites. EBNA-1 sites 1 and 2, together with an element(s) within nucleotides 9138 to 9516, are ancillary elements required for full replicator activity.  相似文献   

13.
Plasmid maintenance of derivatives of oriP of Epstein-Barr virus.   总被引:4,自引:2,他引:2       下载免费PDF全文
oriP is the origin of plasmid replication of Epstein-Barr virus. Replication from oriP requires both the cis-acting elements (the family of repeats and the dyad symmetry element) and the viral origin-binding protein, EBNA-1. The ability of plasmids containing oriP to be maintained stably in EBNA-1-positive cells reflects the efficiency both of their replication and of their segregation each cell cycle. The efficiency of plasmid maintenance was determined for plasmids containing derivatives of oriP with one copy of the dyad symmetry element and two copies of the family of repeats by measuring the rate at which they were lost from cells in the absence of selection. These measurements demonstrated that plasmids with derivatives of oriP with two copies of the family of repeats in one orientation are maintained only slightly less efficiently than is wild-type oriP. To determine whether plasmid maintenance could be affected by reinitiation at the dyad symmetry element (T. A. Gahn and C. L. Schildkraut, Cell 58:527-535, 1989), plasmids containing derivatives of oriP with two copies of the dyad symmetry element and one copy of the family of repeats were compared with plasmids containing wild-type oriP in EBNA-1-positive cells. These measurements showed that plasmids containing a derivative of oriP with two copies of the dyad symmetry element are maintained as efficiently as is wild-type oriP and are not amplified relative to wild-type oriP. These observations indicate that the trans-acting factors that regulate DNA to replicate once per S phase are insensitive to multiple cis-acting regulatory sites within a replicon.  相似文献   

14.
15.
16.
T A Gahn  C L Schildkraut 《Cell》1989,58(3):527-535
Epstein-Barr virus (EBV) oriP contains two components, a dyad symmetry element and a direct repeat element, that, in the presence of EBV nuclear antigen 1, are necessary and sufficient for plasmid replication. We have examined the replicative forms generated by EBV oriP using 2D gel electrophoresis. The patterns obtained from an oriP plasmid in a transfected cell line indicate that the site of initiation of DNA replication is at or very near the dyad symmetry element, while the direct repeats contain a replication fork barrier and the termination site. Thus, replication from oriP proceeds in a predominantly undirectional manner. The patterns obtained from cells immortalized by EBV suggest that replication from oriP proceeds similarly in the viral genome.  相似文献   

17.
The Epstein-Barr virus (EBV) latent origin of DNA replication (oriP) is composed of two elements that contain binding sites for the sole viral gene product required for latent cycle replication, EBNA-1. One of these elements, region I, functions as an EBNA-1-dependent enhancer for RNA polymerase II-transcribed genes, may play a role in plasmid segregation, and is required for origin function in B cells latently infected with EBV. The second element, region II, contains or is very near the site of initiation of DNA replication. A genetic approach was taken to determine the contribution of the EBNA-1 binding sites in oriP to origin function. Although region I is required for the transient replication of plasmids bearing region II in EBV-infected B cells, a plasmid lacking region I but containing region II, was observed to replicate transiently in both D98/Raji and HeLa cells expressing EBNA-1. Thus, binding of EBNA-1 to region I is not absolutely required for the molecular events that lead to initiation of DNA replication at region II. Site-directed mutagenesis of the four EBNA-1-binding sites in region II, individually and in various combinations, demonstrated that only two EBNA-1-binding sites are required for region II function. The results obtained with these mutants, together with the analysis of the replicative ability of plasmids containing insertions between EBNA-1-binding sites, suggested that the spatial relationship of the two sites is critical. Mutants that contain only two EBNA-1-binding sites separated by 26 to 31 bp in region II were not maintained as plasmids over many cell generations and were greatly reduced in their ability to replicate transiently in D98/Raji cells. The EBNA-1-induced bending or untwisting of the DNA in EBNA-1-binding sites 1 and 4 in region II did not, however, demonstrate this spatial constraint. It may be concluded from these results that specific protein-protein interactions between EBNA-1 and/or between EBNA-1 and a cellular protein(s) are required for origin function.  相似文献   

18.
19.
Metazoan genomes contain thousands of replication origins, but only a limited number have been characterized so far. We developed a two-step origin-trapping assay in which human chromatin fragments associated with origin recognition complex (ORC) in vivo were first enriched by chromatin immunoprecipitation. In a second step, these fragments were screened for transient replication competence in a plasmid-based assay utilizing the Epstein-Barr virus latent origin oriP. oriP contains two elements, an origin (dyad symmetry element [DS]) and the family of repeats, that when associated with the viral protein EBNA1 facilitate extrachromosomal stability. Insertion of the ORC-binding human DNA fragments in oriP plasmids in place of DS enabled us to screen functionally for their abilities to restore replication. Using the origin-trapping assay, we isolated and characterized five previously unknown human origins. The assay was validated with nascent strand abundance assays that confirm these origins as active initiation sites in their native chromosomal contexts. Furthermore, ORC and MCM2-7 components localized at these origins during G(1) phase of the cell cycle but were not detected during mitosis. This finding extends the current understanding of origin-ORC dynamics by suggesting that replication origins must be reestablished during the early stages of each cell division cycle and that ORC itself participates in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号