首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of the Bromovirus and Cucumovirus genera have a tRNA-like structure at the 3' end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. In Brome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5'CA3' dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.  相似文献   

2.
Choi SK  Hema M  Gopinath K  Santos J  Kao C 《Journal of virology》2004,78(24):13420-13429
The cis-acting elements for Brome mosaic virus (BMV) RNA synthesis have been characterized primarily for RNA3. To identify additional replicase-binding elements, nested fragments of all three of the BMV RNAs, both plus- and minus-sense fragments, were constructed and tested for binding enriched BMV replicase in a template competition assay. Ten RNA fragments containing replicase-binding sites were identified; eight were characterized further because they were more effective competitors. All eight mapped to noncoding regions of BMV RNAs, and the positions of seven localized to sequences containing previously characterized core promoter elements (C. C. Kao, Mol. Plant Pathol. 3:55-62, 2001), thus suggesting the identities of the replicase-binding sites. Three contained the tRNA-like structures that direct minus-strand RNA synthesis, three were within the 3' region of each minus-strand RNA that contained the core promoter for genomic plus-strand initiation, and one was in the core subgenomic promoter. Single-nucleotide mutations known previously to abolish RNA synthesis in vitro prevented replicase binding. When tested in the context of the respective full-length RNAs, the same mutations abolished BMV RNA synthesis in transfected barley protoplasts. The eighth site was within the intercistronic region (ICR) of plus-strand RNA3. Further mapping showed that a sequence of 22 consecutive adenylates was responsible for binding the replicase, with 16 being the minimal required length. Deletion of the poly(A) sequence was previously shown to severely debilitate BMV RNA replication in plants (E. Smirnyagina, Y. H. Hsu, N. Chua, and P. Ahlquist, Virology 198:427-436, 1994). Interestingly, the B box motif in the ICR of RNA3, which has previously been determined to bind the 1a protein, does not bind the replicase. These results identify the replicase-binding sites in all of the BMV RNAs and suggest that the recognition of RNA3 is different from that of RNA1 and RNA2.  相似文献   

3.
The genome of brome mosaic virus (BMV) is comprised of three (+) strand RNAs, each containing a similar, highly structured, 200 base long sequence at its 3' end. A 134 base subset of this sequence contains signals directing interaction of the viral RNA with BMV RNA replicase, ATP,CTP:tRNA nucleotidyl transferase and aminoacyl tRNA synthetase. A series of mutants containing deletions within this region, previously constructed and tested in vitro for the effect on replication and aminoacylation activities, has now been assayed in vitro for adenylation function and in vivo for ability to replicate in isolated protoplasts and whole plants. These tests indicate that features of viral RNA recognized by BMV replicase overlap those directing adenylation, but are distinct from those directing aminoacylation. Consequently, the lethality of a deletion preferentially inhibiting aminoacylation suggests that this function may have an essential role contributing to viral replication in vivo. An RNA3 mutant bearing a 20-base deletion yielding normal levels of aminoacylation and enhanced levels of replicase template activity and adenylation in vitro was able to replicate in protoplasts and plants; however, its accumulation in protoplasts was reduced relative to wild-type. This suggests that additional functions affecting the replication and accumulation of viral RNA reside in the conserved 3' sequence.  相似文献   

4.
5.
6.
7.
8.
Sequences within the conserved, aminoacylatable 3' noncoding regions of brome mosaic virus (BMV) genomic RNAs 1, 2, and 3 direct initiation of negative-strand synthesis by BMV polymerase extracts and, like sequences at the structurally divergent but aminoacylatable 3' end of tobacco mosaic virus (TMV) RNA, are required in cis for RNA replication in vivo. A series of chimeric RNAs in which selected 3' segments were exchanged between the tyrosine-accepting BMV and histidine-accepting TMV RNAs were constructed and their amplification was examined in protoplasts inoculated with or without other BMV and TMV RNAs. TMV derivatives whose 3' noncoding region was replaced by sequences from BMV RNA3 were independently replication competent when the genes for the TMV 130,000-M(r) and 180,000-M(r) replication factors remained intact. TMV replicase can thus utilize the BMV-derived 3' end, though at lower efficiency than the wild-type (wt) TMV 3' end. Providing functional BMV RNA replicase by coinoculation with BMV genomic RNAs 1 and 2 did not improve the amplification of these hybrid genomic RNAs. By contrast, BMV RNA3 derivatives carrying the 3' noncoding region of TMV were not amplified when coinoculated with wt BMV RNA1 and RNA2, wt TMV RNA, or all three. Thus, BMV replicase appeared to be unable to utilize the TMV 3' end, and there was no evidence of intervirus complementation in the replication of any of the hybrid RNAs. In protoplasts coinoculated with BMV RNA1 and RNA2, the nonamplifiable RNA3 derivatives bearing TMV 3' sequences gave rise to diverse new rearranged or recombined RNA species that were amplifiable.  相似文献   

9.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   

10.
11.
12.
13.
Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [ Sivakumaran, K. and Kao, C.C. (1999) J. Virol. 64 , 6415–6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.  相似文献   

14.
A 15-nucleotide (nt) unstructured RNA with an initiation site but lacking a promoter could direct the initiation of RNA synthesis by the brome mosaic virus (BMV) replicase in vitro. However, BMV RNA with a functional initiation site but a mutated promoter could not initiate RNA synthesis either in vitro or in vivo. To explain these two observations, we hypothesize that RNA structures that cannot function as promoters could prevent RNA synthesis by the BMV RNA replicase. We documented that four different nonpromoter stem-loops can inhibit RNA synthesis from an initiation-competent RNA sequence in vitro. Destabilizing these structures increased RNA synthesis. However, RNA synthesis was restored in full only when a BMV RNA promoter element was added in cis. Competition assays to examine replicase-RNA interactions showed that the structured RNAs have a lower affinity for the replicase than do RNAs lacking stable structures or containing a promoter element. The results characterize another potential mechanism whereby the BMV replicase can specifically recognize BMV RNAs.  相似文献   

15.
Viral RNA replication provides a useful system to study the structure and function of RNAs and the mechanism of RNA synthesis from RNA templates. Previously we demonstrated that a 27 nt RNA from brome mosaic virus (BMV) can direct correct initiation of genomic plus-strand RNA synthesis by the BMV replicase. In this study, using biochemical, nuclear magnetic resonance, and thermodynamic analyses, we determined that the secondary structure of this 27 nt RNA can be significantly altered and retain the ability to direct RNA synthesis. In contrast, we find that position-specific changes in the RNA sequence will affect replicase recognition, modulate the polymerization process, and contribute to the differential accumulation of viral RNAs. These functional results are in agreement with the phylogenetic analysis of BMV and related viral sequences and suggest that a similar mechanism of RNA synthesis takes place for members of the alphavirus superfamily.  相似文献   

16.
Huh SU  Kim MJ  Ham BK  Paek KH 《The New phytologist》2011,191(3):746-762
? In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. ? To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. ? Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. ? These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.  相似文献   

17.
18.
The helicase-like 1a and polymerase-like 2a proteins of brome mosaic virus (BMV) are required for viral RNA replication in vivo, are present in membrane-bound viral RNA polymerase extracts, and share conservation with the many other members of the alphavirus-like superfamily. To better understand BMV RNA replication and BMV-host interactions, we used confocal microscopy and double-label immunofluorescence to determine and compare the sites of 1a, 2a, and nascent viral RNA accumulation in BMV-infected barley protoplasts. 1a and 2a showed nearly complete colocalization throughout infection, accumulating in defined cytoplasmic spots usually adjacent to or surrounding the nucleus. These spots grew throughout infection and by 16 h postinoculation often assumed a vesicle-like appearance. The BMV RNA replication complex incorporated 5-bromouridine 5'-triphosphate into RNA in vitro and in vivo, allowing immunofluorescent detection of nascent RNA. The cytoplasmic sites of BMV-specific RNA synthesis coincided with the sites of 1a and 2a accumulation, and at the resolution of confocal microscopy, all sites of 1a and 2a accumulation were sites of BMV RNA synthesis. Double-label immunofluorescence detection of selected subcellular markers and 1a or 2a showed that BMV replication complexes were tightly associated with markers for the endoplasmic reticulum but not the medial Golgi or later compartments of the cellular secretory pathway. Defining this association of BMV RNA replication complexes with endoplasmic reticulum markers should assist in identifying and characterizing host factors involved in BMV RNA replication.  相似文献   

19.
Cell-penetrating peptides (CPP) can translocate across the cell membrane and have been extensively studied for the delivery of proteins, nucleic acids, and therapeutics in mammalian cells. However, characterizations of CPP in plants have only recently been initiated. We showed that the intact virion and a recombinant capsid protein (CaP) from a plant-infecting nonenveloped icosahedral RNA virus, Brome mosaic virus (BMV), can penetrate the membranes of plant protoplasts but are trapped by the extracellular matrix. Furthermore, a 22-residue peptide derived from the N-terminal region of the CaP (CPNT) can enter barley protoplasts and cells of intact barley and Arabidopsis roots. An inhibitor of the macropinocytosis reduced CPNT entry, while treatment with NiCl(2) changed the cellular localization of CPNT. CPNT increased uptake of the green flourescent protein (GFP) into the cell when covalently fused to GFP or when present in trans of GFP. The BMV CPNT overlaps with the sequence known to bind BMV RNA, and it can deliver BMV RNAs into cells, resulting in viral replication, as well as deliver double-stranded RNAs that can induce gene silencing.  相似文献   

20.
The genome of brome mosaic virus (BMV) is divided among messenger polarity RNA1, RNA2, and RNA3 (3.2, 2.9, and 2.1 kilobases, respectively). cis-Acting sequences required for BMV RNA amplification were investigated with RNA3. By using expressible cDNA clones, deletions were constructed throughout RNA3 and tested in barley protoplasts coinoculated with RNA1 and RNA2. In contrast to requirements for 5'- and 3'-terminal noncoding sequences, either of the two RNA3 coding regions can be deleted individually and both can be simultaneously inactivated by N-terminal frameshift mutations without significantly interfering with amplification of RNA3 or production of its subgenomic mRNA. However, simultaneous major deletions in both coding regions greatly attenuate RNA3 accumulation. RNA3 levels can be largely restored by insertion of a heterologous, nonviral sequence in such mutants, suggesting that RNA3 requires physical separation of its terminal domains or a minimum overall size for normal replication or stability. Unexpectedly, deletions in a 150-base segment of the intercistronic noncoding region drastically reduce RNA3 accumulation. This segment contains a sequence element homologous to sequences found near the 5' ends of BMV RNA1 and RNA2 and in analogous positions in the three genomic RNAs of the related cucumber mosaic virus, suggesting a possible role in plus-strand synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号