首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Antisense-RNA regulation and RNA interference   总被引:53,自引:0,他引:53  
For a long time, RNA has been merely regarded as a molecule that can either function as a messenger (mRNA) or as part of the translational machinery (tRNA, rRNA). Meanwhile, it became clear that RNAs are versatile molecules that do not only play key roles in many important biological processes like splicing, editing, protein export and others, but can also--like enzymes--act catalytically. Two important aspects of RNA function--antisense-RNA control and RNA interference (RNAi)--are emphasized in this review. Antisense-RNA control functions in all three kingdoms of life--although the majority of examples are known from bacteria. In contrast, RNAi, gene silencing triggered by double-stranded RNA, the oldest and most ubiquitous antiviral system, is exclusively found in eukaryotes. Our current knowledge about occurrence, biological roles and mechanisms of action of antisense RNAs as well as the recent findings about involved genes/enzymes and the putative mechanism of RNAi are summarized. An interesting intersection between both regulatory mechanisms is briefly discussed.  相似文献   

2.
RNA干扰(RNA interference,RNAi)是一类在真核生物中广泛存在的,由双链RNA介导的转录后基因沉默机制。作为一项研究基因功能的有力工具,RNAi技术已经被广泛应用在线虫、果蝇、斑马鱼和小鼠等生物的基因组学研究中。近来在甲壳动物中,通过RNAi技术取得了众多的科研成果。文章从免疫、生长发育、蜕皮、生殖、性别调控、渗透压调节和代谢等几个方面进行了综述。进而对RNAi技术在甲壳动物中的研究前景进行了展望,旨在为以后更好地研究甲壳动物的基因功能和调控网络提供参考。  相似文献   

3.
Epigenetic mechanisms regulate genome structure and expression profiles in eukaryotes. RNA interference (RNAi) and other small RNA-based chromatin-modifying activities can act to reset the epigenetic landscape at defined chromatin domains. Centromeric heterochromatin assembly is a RNAi-dependent process in the fission yeast Schizosaccharomyces pombe, and provides a paradigm for detailed examination of such epigenetic processes. Here we review recent progress in understanding the mechanisms that underpin RNAi-mediated heterochromatin formation in S. pombe. We discuss recent analyses of the events that trigger RNAi and manipulations which uncouple RNAi and chromatin modification. Finally we provide an overview of similar molecular machineries across species where related small RNA pathways appear to drive the epigenetic reprogramming in germ cells and/or during early development in metazoans.  相似文献   

4.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

5.
6.
RNA interference (RNAi) refers to the selective degradation of mRNA induced by double-stranded RNA (dsRNA), first discovered in Caenorhabditis elegans. Homology-dependent silencing phenomena related to RNAi have been observed in many species from all eukaryotic kingdoms. RNAi and related mechanisms share several conserved components. The hallmark of these phenomena is the presence of short dsRNA molecules (21-25 bp long), termed short interfering RNA (siRNA), which are generated from dsRNA by the activity of Dicer, a specific type III RNAse. These molecules serve as a template for the recognition and cleavage of the cognate mRNA. As it is beyond the scope of a single review to cover all aspects of RNAi, this review will focus on certain steps of the pathway relevant to mammals and on the use of long dsRNA to specifically silence genes in mammalian cells permissive to this technique, such as oocytes and early embryos.  相似文献   

7.
Yi Zhang 《生物学前沿》2010,5(6):471-472
Posterior to the discovery of the doublestranded RNA mediated gene silencing two decades ago, RNA interference or RNA-mediated gene silencing has received unusual intensity of study in the biology-related research fields. RNA silencing represents a large spectrum of gene regulation mechanisms in all kingdoms of eukaryotes. The power and necessity of RNA silencing has been unambiguously appreciated in both animals and plants, although the mechanisms engaged are divergent in some aspects. Interestingly, as comprehensively reviewed by Schumann et al. in this issue, RNA silencing in the simple eukaryotic fungi strikingly differs from those of animals and plants, and among fungal species as well.  相似文献   

8.
9.
Short hairpin RNA-expressing bacteria elicit RNA interference in mammals   总被引:3,自引:0,他引:3  
RNA-interference (RNAi) is a potent mechanism, conserved from plants to humans for specific silencing of genes, which holds promise for functional genomics and gene-targeted therapies. Here we show that bacteria engineered to produce a short hairpin RNA (shRNA) targeting a mammalian gene induce trans-kingdom RNAi in vitro and in vivo. Nonpathogenic Escherichia coli were engineered to transcribe shRNAs from a plasmid containing the invasin gene Inv and the listeriolysin O gene HlyA, which encode two bacterial factors needed for successful transfer of the shRNAs into mammalian cells. Upon oral or intravenous administration, E. coli encoding shRNA against CTNNB1 (catenin beta-1) induce significant gene silencing in the intestinal epithelium and in human colon cancer xenografts in mice. These results provide an example of trans-kingdom RNAi in higher organisms and suggest the potential of bacteria-mediated RNAi for functional genomics, therapeutic target validation and development of clinically compatible RNAi-based therapies.  相似文献   

10.
This review focuses on the mobility of small RNA (sRNA) molecules from the perspective of trans-kingdom gene silencing. Mobility of sRNA molecules within organisms is a well-known phenomenon, facilitating gene silencing between cells and tissues. sRNA signals are also transmitted between organisms of the same species and of different species. Remarkably, in recent years many examples of RNA-signal exchange have been described to occur between organisms of different kingdoms. These examples are predominantly found in interactions between hosts and their pathogens, parasites, and symbionts. However, they may only represent the tip of the iceberg, since the emerging picture suggests that organisms in biological niches commonly exchange RNA-silencing signals. In this case, we need to take this into account fully to understand how a given biological equilibrium is obtained. Despite many observations of trans-kingdom RNA signal transfer, several mechanistic aspects of these signals remain unknown. Such RNA signal transfer is already being exploited for practical purposes, though. Pathogen genes can be silenced by plant-produced sRNAs designed to affect these genes. This is also known as Host-Induced Genes Silencing (HIGS), and it has the potential to become an important disease-control method in the future.  相似文献   

11.
RNA interference: genetic wand and genetic watchdog   总被引:1,自引:0,他引:1  
In many species, introduction of double-stranded RNA (dsRNA) induces potent and specific gene silencing, a phenomenon called RNA interference or RNAi. The apparently widespread nature of RNAi in eukaryotes, ranging from trypanosome to mouse, has sparked great interest from both applied and fundamental standpoints. Here we review the technical improvements being made to increase the experimental potential of this technique. We also discuss recent advances in uncovering the proteins that act during the RNAi process, discoveries that have revealed enticing links between transposition, transgene silencing and RNAi.  相似文献   

12.
The discovery of RNA interference (RNAi) has augmented our knowledge of gene regulation and presents a fascinating technology that has a great potential for application in genetic analysis, disease therapy, plant protection, and many other areas. In this review, we will focus on the biological functions of RNAi and its application in agriculture with a brief introduction to the history of its discovery and molecular mechanism. Supported by National Natural Sciences of China (Grant No. 30630008) and National Key Basic Research and Development Program of China (Grant No. 2007CB108800).  相似文献   

13.
Gene silencing is a conserved mechanism in eukaryotes that dynamically regulates gene expression. In plants, gene silencing is critical for development and for maintenance of genome integrity. Additionally, it is a critical component of antiviral defence in plants, nematodes, insects, and fungi. To overcome gene silencing, viruses encode effectors that suppress gene silencing. A growing body of evidence shows that gene silencing and suppression of silencing are also used by plants during their interaction with nonviral pathogens such as fungi, oomycetes, and bacteria. Plant–pathogen interactions involve trans-kingdom movement of small RNAs into the pathogens to alter the function of genes required for their development and virulence. In turn, plant-associated pathogenic and nonpathogenic microbes also produce small RNAs that move trans-kingdom into host plants to disrupt pathogen defence through silencing of plant genes. The mechanisms by which these small RNAs move from the microbe to the plant remain poorly understood. In this review, we examine the roles of trans-kingdom small RNAs and silencing suppressors produced by nonviral microbes in inducing and suppressing gene silencing in plants. The emerging model is that gene silencing and suppression of silencing play critical roles in the interactions between plants and their associated nonviral microbes.  相似文献   

14.
Tropical diseases caused by parasitic worms and protists are of major public health concern affecting millions of people worldwide. New therapeutic and diagnostic tools would be of great help in dealing with the public health and economic impact of these diseases. RNA interference (RNAi) pathways utilize small non-coding RNAs to regulate gene expression in a sequence-specific manner. In recent years, a wealth of data about the mechanisms and biological functions of RNAi pathways in distinct groups of eukaryotes has been described. Often, RNAi pathways have unique features that are restricted to groups of eukaryotes. The focus of this review will be on RNAi pathways in specific groups of parasitic eukaryotes that include Trypanosoma cruzi, Plasmodium and Schistosoma mansoni. These parasites are the causative agents of Chagas disease, Malaria, and Schistosomiasis, respectively, all of which are tropical diseases that would greatly benefit from the development of new diagnostic and therapeutic tools. In this context, we will describe specific features of RNAi pathways in each of these parasitic eukaryotic groups and discuss how they could be exploited for the treatment of tropical diseases.  相似文献   

15.
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism in eukaryotes, which is believed to function as a defence against viruses and transposons. Since its discovery, RNAi has been developed into a widely used technique for generating genetic knock-outs and for studying gene function by reverse genetics. Additionally, inhibition of virus replication by means of induced RNAi has now been reported for numerous viruses, including several important human pathogens such as human immunodeficiency virus type 1, hepatitis C virus, hepatitis B virus, dengue virus, poliovirus and influenza virus A. In this review, we will summarize the current data on RNAi-mediated inhibition of virus replication and discuss the possibilities for the development of RNAi-based antiviral therapeutics.  相似文献   

16.
Zhuang JJ  Hunter CP 《Parasitology》2012,139(5):560-573
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.  相似文献   

17.
Small interfering RNA (siRNA) enables efficient target gene silencing by employing a RNA interference (RNAi) mechanism, which can compromise gene expression and regulate gene activity by cleaving mRNA or repressing its translation. Twenty years after the discovery of RNAi in 1998, ONPATTRO? (patisiran) (Alnylam Pharmaceuticals, Inc.), a lipid formulated siRNA modality, was approved for the first time by United States Food and Drug Administration and the European Commission in 2018. With this milestone achievement, siRNA therapeutics will soar in the coming years. Here, we review the discovery and the mechanisms of RNAi, briefly describe the delivery technologies of siRNA, and summarize recent clinical advances of siRNA therapeutics.  相似文献   

18.
RNA interference: The molecular immune system   总被引:2,自引:0,他引:2  
Introduction of double-stranded RNA (dsRNA) into cells expressing a homologous gene triggers RNA interference (RNAi), or RNA-based gene silencing (RBGS). The dsRNA degrades corresponding host mRNA into small interfering RNAs (siRNAs) by a protein complex containing Dicer. siRNAs in turn are incorporated into the RNA-induced silencing complex (RISC) that includes helicase, RecA, and exo- and endo-nucleases as well as other proteins. Following its assembly, the RISC guides the RNA degradation machinery to the target RNAs and cleaves the cognate target RNA in a sequence-specific, siRNA-dependent manner. RNAi has now been documented in a wide variety of organisms, including plants, fungi, flies, worms, and more recently, higher mammals. In eukaryotes, dsRNA directed against a range of viruses (i.e., HIV-1, RSV, HPV, poliovirus and others) and endogenous genes can induce sequence-specific inhibition of gene expression. In invertebrates, RNAi can be efficiently triggered by either long dsRNAs or 21- to 23-nt-long siRNAs. However, in jawed vertebrates, dsRNA longer than 30 bp can induce interferon and thus trigger undesirable side effects instead of initiating RNAi. siRNAs have been shown to act as potent inducers of RNAi in cultured mammalian cells. Many investigators have suggested that siRNAs may have evolved as a normal defense against endogenous and exogenous transposons and retroelements. Through a combination of genetic and biochemical approaches, some of the mechanisms underlying RNAi have been described. Recent data in C. elegans shows that two homologs of siRNAs, microRNAs (miRNAs) and tiny noncoding RNAs (tncRNAs) are endogenously expressed. However, many aspects of RNAi-induced gene silencing, including its origins and the selective pressures which maintain it, remain undefined. Its evolutionary history may pass through the more primitive immune functions of prokaryotes involving restriction enzymes that degrade plasmid DNA molecules that enter bacterial cells. RNAi has evolved further among eukaryotes, in which its wide distribution suggests early origins. RNAi seems to be involved in a variety of regulatory and immune functions that may differ among various kingdoms and phyla. We present here proposed mechanisms by which RBGS protects the host against endogenous and exogenous transposons and retroelements. The potential for therapeutic application of RBGS technology in treating viral infections such as HIV is also discussed.  相似文献   

19.
Origins and evolution of eukaryotic RNA interference   总被引:1,自引:0,他引:1  
Small interfering RNAs (siRNAs) and genome-encoded microRNAs (miRNAs) silence genes via complementary interactions with mRNAs. With thousands of miRNA genes identified and genome sequences of diverse eukaryotes available for comparison, the opportunity emerges for insights into the origin and evolution of RNA interference (RNAi). The miRNA repertoires of plants and animals appear to have evolved independently. However, conservation of the key proteins involved in RNAi suggests that the last common ancestor of modern eukaryotes possessed siRNA-based mechanisms. Prokaryotes have an RNAi-like defense system that is functionally analogous but not homologous to eukaryotic RNAi. The protein machinery of eukaryotic RNAi seems to have been pieced together from ancestral archaeal, bacterial and phage proteins that are involved in DNA repair and RNA processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号